ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isermulc2 Unicode version

Theorem isermulc2 11766
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
isermulc2.2  |-  ( ph  ->  M  e.  ZZ )
isermulc2.4  |-  ( ph  ->  C  e.  CC )
isermulc2.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
isermulc2.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
isermulc2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
Assertion
Ref Expression
isermulc2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  ( C  x.  A ) )
Distinct variable groups:    A, k    k, F    k, M    C, k    k, G    ph, k    k, Z

Proof of Theorem isermulc2
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isermulc2.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 isermulc2.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 isermulc2.4 . 2  |-  ( ph  ->  C  e.  CC )
5 seqex 10631 . . 3  |-  seq M
(  +  ,  G
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  +  ,  G )  e. 
_V )
7 isermulc2.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
81, 2, 7serf 10665 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
98ffvelcdmda 5738 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
10 addcl 8085 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
1110adantl 277 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  +  x )  e.  CC )
124adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  C  e.  CC )
13 adddi 8092 . . . . 5  |-  ( ( C  e.  CC  /\  k  e.  CC  /\  x  e.  CC )  ->  ( C  x.  ( k  +  x ) )  =  ( ( C  x.  k )  +  ( C  x.  x ) ) )
14133expb 1207 . . . 4  |-  ( ( C  e.  CC  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  ( C  x.  ( k  +  x
) )  =  ( ( C  x.  k
)  +  ( C  x.  x ) ) )
1512, 14sylan 283 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( C  x.  ( k  +  x
) )  =  ( ( C  x.  k
)  +  ( C  x.  x ) ) )
16 simpr 110 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
1716, 1eleqtrdi 2300 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
181eleq2i 2274 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1918, 7sylan2br 288 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 477 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 isermulc2.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
2218, 21sylan2br 288 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( C  x.  ( F `
 k ) ) )
2322adantlr 477 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( C  x.  ( F `
 k ) ) )
24 mulcl 8087 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2524adantl 277 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
2611, 15, 17, 20, 23, 25, 12seq3distr 10714 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  =  ( C  x.  (  seq M
(  +  ,  F
) `  j )
) )
271, 2, 3, 4, 6, 9, 26climmulc2 11757 1  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  ( C  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958    + caddc 7963    x. cmul 7965   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by:  isummulc2  11852  mertensabs  11963  ege2le3  12097  eftlub  12116
  Copyright terms: Public domain W3C validator