ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isermulc2 Unicode version

Theorem isermulc2 11137
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
isermulc2.2  |-  ( ph  ->  M  e.  ZZ )
isermulc2.4  |-  ( ph  ->  C  e.  CC )
isermulc2.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
isermulc2.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
isermulc2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
Assertion
Ref Expression
isermulc2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  ( C  x.  A ) )
Distinct variable groups:    A, k    k, F    k, M    C, k    k, G    ph, k    k, Z

Proof of Theorem isermulc2
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isermulc2.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 isermulc2.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 isermulc2.4 . 2  |-  ( ph  ->  C  e.  CC )
5 seqex 10247 . . 3  |-  seq M
(  +  ,  G
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  +  ,  G )  e. 
_V )
7 isermulc2.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
81, 2, 7serf 10274 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
98ffvelrnda 5559 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
10 addcl 7765 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
1110adantl 275 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  +  x )  e.  CC )
124adantr 274 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  C  e.  CC )
13 adddi 7772 . . . . 5  |-  ( ( C  e.  CC  /\  k  e.  CC  /\  x  e.  CC )  ->  ( C  x.  ( k  +  x ) )  =  ( ( C  x.  k )  +  ( C  x.  x ) ) )
14133expb 1183 . . . 4  |-  ( ( C  e.  CC  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  ( C  x.  ( k  +  x
) )  =  ( ( C  x.  k
)  +  ( C  x.  x ) ) )
1512, 14sylan 281 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( C  x.  ( k  +  x
) )  =  ( ( C  x.  k
)  +  ( C  x.  x ) ) )
16 simpr 109 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
1716, 1eleqtrdi 2233 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
181eleq2i 2207 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1918, 7sylan2br 286 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 469 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 isermulc2.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
2218, 21sylan2br 286 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( C  x.  ( F `
 k ) ) )
2322adantlr 469 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( C  x.  ( F `
 k ) ) )
24 mulcl 7767 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2524adantl 275 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
2611, 15, 17, 20, 23, 25, 12seq3distr 10313 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  =  ( C  x.  (  seq M
(  +  ,  F
) `  j )
) )
271, 2, 3, 4, 6, 9, 26climmulc2 11128 1  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  ( C  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2687   class class class wbr 3933   ` cfv 5127  (class class class)co 5778   CCcc 7638    + caddc 7643    x. cmul 7645   ZZcz 9074   ZZ>=cuz 9346    seqcseq 10245    ~~> cli 11075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-n0 8998  df-z 9075  df-uz 9347  df-rp 9467  df-seqfrec 10246  df-exp 10320  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799  df-clim 11076
This theorem is referenced by:  isummulc2  11223  mertensabs  11334  ege2le3  11405  eftlub  11424
  Copyright terms: Public domain W3C validator