ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isermulc2 Unicode version

Theorem isermulc2 11508
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
isermulc2.2  |-  ( ph  ->  M  e.  ZZ )
isermulc2.4  |-  ( ph  ->  C  e.  CC )
isermulc2.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
isermulc2.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
isermulc2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
Assertion
Ref Expression
isermulc2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  ( C  x.  A ) )
Distinct variable groups:    A, k    k, F    k, M    C, k    k, G    ph, k    k, Z

Proof of Theorem isermulc2
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isermulc2.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 isermulc2.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 isermulc2.4 . 2  |-  ( ph  ->  C  e.  CC )
5 seqex 10544 . . 3  |-  seq M
(  +  ,  G
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  +  ,  G )  e. 
_V )
7 isermulc2.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
81, 2, 7serf 10578 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
98ffvelcdmda 5698 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
10 addcl 8007 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
1110adantl 277 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  +  x )  e.  CC )
124adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  C  e.  CC )
13 adddi 8014 . . . . 5  |-  ( ( C  e.  CC  /\  k  e.  CC  /\  x  e.  CC )  ->  ( C  x.  ( k  +  x ) )  =  ( ( C  x.  k )  +  ( C  x.  x ) ) )
14133expb 1206 . . . 4  |-  ( ( C  e.  CC  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  ( C  x.  ( k  +  x
) )  =  ( ( C  x.  k
)  +  ( C  x.  x ) ) )
1512, 14sylan 283 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( C  x.  ( k  +  x
) )  =  ( ( C  x.  k
)  +  ( C  x.  x ) ) )
16 simpr 110 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
1716, 1eleqtrdi 2289 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
181eleq2i 2263 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1918, 7sylan2br 288 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 477 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 isermulc2.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
2218, 21sylan2br 288 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( C  x.  ( F `
 k ) ) )
2322adantlr 477 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( C  x.  ( F `
 k ) ) )
24 mulcl 8009 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2524adantl 277 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
2611, 15, 17, 20, 23, 25, 12seq3distr 10627 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  =  ( C  x.  (  seq M
(  +  ,  F
) `  j )
) )
271, 2, 3, 4, 6, 9, 26climmulc2 11499 1  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  ( C  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7880    + caddc 7885    x. cmul 7887   ZZcz 9329   ZZ>=cuz 9604    seqcseq 10542    ~~> cli 11446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-rp 9732  df-seqfrec 10543  df-exp 10634  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447
This theorem is referenced by:  isummulc2  11594  mertensabs  11705  ege2le3  11839  eftlub  11858
  Copyright terms: Public domain W3C validator