ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdv Unicode version

Theorem subrgdv 14196
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1  |-  S  =  ( Rs  A )
subrgdv.2  |-  ./  =  (/r
`  R )
subrgdv.3  |-  U  =  (Unit `  S )
subrgdv.4  |-  E  =  (/r `  S )
Assertion
Ref Expression
subrgdv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6  |-  S  =  ( Rs  A )
2 eqid 2229 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
3 subrgdv.3 . . . . . 6  |-  U  =  (Unit `  S )
4 eqid 2229 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
51, 2, 3, 4subrginv 14195 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
653adant2 1040 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( ( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
76oveq2d 6016 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  R ) ( (
invr `  S ) `  Y ) ) )
8 subrgrcl 14184 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
9 eqid 2229 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
101, 9ressmulrg 13173 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
118, 10mpdan 421 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
12113ad2ant1 1042 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  S ) )
1312oveqd 6017 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  S ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
147, 13eqtrd 2262 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
15 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  R )  =  (
Base `  R )
)
16 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  R ) )
17 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  (Unit `  R
)  =  (Unit `  R ) )
18 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  R )  =  (
invr `  R )
)
19 subrgdv.2 . . . 4  |-  ./  =  (/r
`  R )
2019a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ./  =  (/r `  R ) )
2183ad2ant1 1042 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  R  e.  Ring )
22 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2322subrgss 14180 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
24233ad2ant1 1042 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  C_  ( Base `  R ) )
25 simp2 1022 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  A )
2624, 25sseldd 3225 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  R )
)
27 eqid 2229 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
281, 27, 3subrguss 14194 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
29283ad2ant1 1042 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  C_  (Unit `  R ) )
30 simp3 1023 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  U )
3129, 30sseldd 3225 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  (Unit `  R ) )
3215, 16, 17, 18, 20, 21, 26, 31dvrvald 14092 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) )
33 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  S )  =  (
Base `  S )
)
34 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  S )  =  ( .r `  S ) )
353a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  =  (Unit `  S ) )
36 eqidd 2230 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  S )  =  (
invr `  S )
)
37 subrgdv.4 . . . 4  |-  E  =  (/r `  S )
3837a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  E  =  (/r
`  S ) )
391subrgring 14182 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
40393ad2ant1 1042 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  S  e.  Ring )
411subrgbas 14188 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
42413ad2ant1 1042 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  =  ( Base `  S )
)
4325, 42eleqtrd 2308 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  S )
)
4433, 34, 35, 36, 38, 40, 43, 30dvrvald 14092 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X E Y )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
4514, 32, 443eqtr4d 2272 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   .rcmulr 13106   Ringcrg 13954  Unitcui 14045   invrcinvr 14078  /rcdvr 14089  SubRingcsubrg 14175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079  df-dvr 14090  df-subrg 14177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator