ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdv Unicode version

Theorem subrgdv 14115
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1  |-  S  =  ( Rs  A )
subrgdv.2  |-  ./  =  (/r
`  R )
subrgdv.3  |-  U  =  (Unit `  S )
subrgdv.4  |-  E  =  (/r `  S )
Assertion
Ref Expression
subrgdv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6  |-  S  =  ( Rs  A )
2 eqid 2207 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
3 subrgdv.3 . . . . . 6  |-  U  =  (Unit `  S )
4 eqid 2207 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
51, 2, 3, 4subrginv 14114 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
653adant2 1019 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( ( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
76oveq2d 5983 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  R ) ( (
invr `  S ) `  Y ) ) )
8 subrgrcl 14103 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
9 eqid 2207 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
101, 9ressmulrg 13092 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
118, 10mpdan 421 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
12113ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  S ) )
1312oveqd 5984 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  S ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
147, 13eqtrd 2240 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
15 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  R )  =  (
Base `  R )
)
16 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  R ) )
17 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  (Unit `  R
)  =  (Unit `  R ) )
18 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  R )  =  (
invr `  R )
)
19 subrgdv.2 . . . 4  |-  ./  =  (/r
`  R )
2019a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ./  =  (/r `  R ) )
2183ad2ant1 1021 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  R  e.  Ring )
22 eqid 2207 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2322subrgss 14099 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
24233ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  C_  ( Base `  R ) )
25 simp2 1001 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  A )
2624, 25sseldd 3202 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  R )
)
27 eqid 2207 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
281, 27, 3subrguss 14113 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
29283ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  C_  (Unit `  R ) )
30 simp3 1002 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  U )
3129, 30sseldd 3202 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  (Unit `  R ) )
3215, 16, 17, 18, 20, 21, 26, 31dvrvald 14011 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) )
33 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  S )  =  (
Base `  S )
)
34 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  S )  =  ( .r `  S ) )
353a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  =  (Unit `  S ) )
36 eqidd 2208 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  S )  =  (
invr `  S )
)
37 subrgdv.4 . . . 4  |-  E  =  (/r `  S )
3837a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  E  =  (/r
`  S ) )
391subrgring 14101 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
40393ad2ant1 1021 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  S  e.  Ring )
411subrgbas 14107 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
42413ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  =  ( Base `  S )
)
4325, 42eleqtrd 2286 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  S )
)
4433, 34, 35, 36, 38, 40, 43, 30dvrvald 14011 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X E Y )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
4514, 32, 443eqtr4d 2250 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   .rcmulr 13025   Ringcrg 13873  Unitcui 13964   invrcinvr 13997  /rcdvr 14008  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967  df-invr 13998  df-dvr 14009  df-subrg 14096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator