| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > subrgdv | Unicode version | ||
| Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| subrgdv.1 | 
 | 
| subrgdv.2 | 
 | 
| subrgdv.3 | 
 | 
| subrgdv.4 | 
 | 
| Ref | Expression | 
|---|---|
| subrgdv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrgdv.1 | 
. . . . . 6
 | |
| 2 | eqid 2196 | 
. . . . . 6
 | |
| 3 | subrgdv.3 | 
. . . . . 6
 | |
| 4 | eqid 2196 | 
. . . . . 6
 | |
| 5 | 1, 2, 3, 4 | subrginv 13793 | 
. . . . 5
 | 
| 6 | 5 | 3adant2 1018 | 
. . . 4
 | 
| 7 | 6 | oveq2d 5938 | 
. . 3
 | 
| 8 | subrgrcl 13782 | 
. . . . . 6
 | |
| 9 | eqid 2196 | 
. . . . . . 7
 | |
| 10 | 1, 9 | ressmulrg 12822 | 
. . . . . 6
 | 
| 11 | 8, 10 | mpdan 421 | 
. . . . 5
 | 
| 12 | 11 | 3ad2ant1 1020 | 
. . . 4
 | 
| 13 | 12 | oveqd 5939 | 
. . 3
 | 
| 14 | 7, 13 | eqtrd 2229 | 
. 2
 | 
| 15 | eqidd 2197 | 
. . 3
 | |
| 16 | eqidd 2197 | 
. . 3
 | |
| 17 | eqidd 2197 | 
. . 3
 | |
| 18 | eqidd 2197 | 
. . 3
 | |
| 19 | subrgdv.2 | 
. . . 4
 | |
| 20 | 19 | a1i 9 | 
. . 3
 | 
| 21 | 8 | 3ad2ant1 1020 | 
. . 3
 | 
| 22 | eqid 2196 | 
. . . . . 6
 | |
| 23 | 22 | subrgss 13778 | 
. . . . 5
 | 
| 24 | 23 | 3ad2ant1 1020 | 
. . . 4
 | 
| 25 | simp2 1000 | 
. . . 4
 | |
| 26 | 24, 25 | sseldd 3184 | 
. . 3
 | 
| 27 | eqid 2196 | 
. . . . . 6
 | |
| 28 | 1, 27, 3 | subrguss 13792 | 
. . . . 5
 | 
| 29 | 28 | 3ad2ant1 1020 | 
. . . 4
 | 
| 30 | simp3 1001 | 
. . . 4
 | |
| 31 | 29, 30 | sseldd 3184 | 
. . 3
 | 
| 32 | 15, 16, 17, 18, 20, 21, 26, 31 | dvrvald 13690 | 
. 2
 | 
| 33 | eqidd 2197 | 
. . 3
 | |
| 34 | eqidd 2197 | 
. . 3
 | |
| 35 | 3 | a1i 9 | 
. . 3
 | 
| 36 | eqidd 2197 | 
. . 3
 | |
| 37 | subrgdv.4 | 
. . . 4
 | |
| 38 | 37 | a1i 9 | 
. . 3
 | 
| 39 | 1 | subrgring 13780 | 
. . . 4
 | 
| 40 | 39 | 3ad2ant1 1020 | 
. . 3
 | 
| 41 | 1 | subrgbas 13786 | 
. . . . 5
 | 
| 42 | 41 | 3ad2ant1 1020 | 
. . . 4
 | 
| 43 | 25, 42 | eleqtrd 2275 | 
. . 3
 | 
| 44 | 33, 34, 35, 36, 38, 40, 43, 30 | dvrvald 13690 | 
. 2
 | 
| 45 | 14, 32, 44 | 3eqtr4d 2239 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-oppr 13624 df-dvdsr 13645 df-unit 13646 df-invr 13677 df-dvr 13688 df-subrg 13775 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |