ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdv Unicode version

Theorem subrgdv 13734
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1  |-  S  =  ( Rs  A )
subrgdv.2  |-  ./  =  (/r
`  R )
subrgdv.3  |-  U  =  (Unit `  S )
subrgdv.4  |-  E  =  (/r `  S )
Assertion
Ref Expression
subrgdv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6  |-  S  =  ( Rs  A )
2 eqid 2193 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
3 subrgdv.3 . . . . . 6  |-  U  =  (Unit `  S )
4 eqid 2193 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
51, 2, 3, 4subrginv 13733 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
653adant2 1018 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( ( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
76oveq2d 5934 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  R ) ( (
invr `  S ) `  Y ) ) )
8 subrgrcl 13722 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
9 eqid 2193 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
101, 9ressmulrg 12762 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
118, 10mpdan 421 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
12113ad2ant1 1020 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  S ) )
1312oveqd 5935 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  S ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
147, 13eqtrd 2226 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
15 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  R )  =  (
Base `  R )
)
16 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  R ) )
17 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  (Unit `  R
)  =  (Unit `  R ) )
18 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  R )  =  (
invr `  R )
)
19 subrgdv.2 . . . 4  |-  ./  =  (/r
`  R )
2019a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ./  =  (/r `  R ) )
2183ad2ant1 1020 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  R  e.  Ring )
22 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2322subrgss 13718 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
24233ad2ant1 1020 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  C_  ( Base `  R ) )
25 simp2 1000 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  A )
2624, 25sseldd 3180 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  R )
)
27 eqid 2193 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
281, 27, 3subrguss 13732 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
29283ad2ant1 1020 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  C_  (Unit `  R ) )
30 simp3 1001 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  U )
3129, 30sseldd 3180 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  (Unit `  R ) )
3215, 16, 17, 18, 20, 21, 26, 31dvrvald 13630 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) )
33 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  S )  =  (
Base `  S )
)
34 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  S )  =  ( .r `  S ) )
353a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  =  (Unit `  S ) )
36 eqidd 2194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  S )  =  (
invr `  S )
)
37 subrgdv.4 . . . 4  |-  E  =  (/r `  S )
3837a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  E  =  (/r
`  S ) )
391subrgring 13720 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
40393ad2ant1 1020 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  S  e.  Ring )
411subrgbas 13726 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
42413ad2ant1 1020 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  =  ( Base `  S )
)
4325, 42eleqtrd 2272 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  S )
)
4433, 34, 35, 36, 38, 40, 43, 30dvrvald 13630 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X E Y )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
4514, 32, 443eqtr4d 2236 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   .rcmulr 12696   Ringcrg 13492  Unitcui 13583   invrcinvr 13616  /rcdvr 13627  SubRingcsubrg 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-dvr 13628  df-subrg 13715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator