ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdv Unicode version

Theorem subrgdv 14000
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1  |-  S  =  ( Rs  A )
subrgdv.2  |-  ./  =  (/r
`  R )
subrgdv.3  |-  U  =  (Unit `  S )
subrgdv.4  |-  E  =  (/r `  S )
Assertion
Ref Expression
subrgdv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6  |-  S  =  ( Rs  A )
2 eqid 2205 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
3 subrgdv.3 . . . . . 6  |-  U  =  (Unit `  S )
4 eqid 2205 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
51, 2, 3, 4subrginv 13999 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
653adant2 1019 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( ( invr `  R ) `  Y )  =  ( ( invr `  S
) `  Y )
)
76oveq2d 5960 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  R ) ( (
invr `  S ) `  Y ) ) )
8 subrgrcl 13988 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
9 eqid 2205 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
101, 9ressmulrg 12977 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
118, 10mpdan 421 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
12113ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  S ) )
1312oveqd 5961 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  S ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
147, 13eqtrd 2238 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
15 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  R )  =  (
Base `  R )
)
16 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  R )  =  ( .r `  R ) )
17 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  (Unit `  R
)  =  (Unit `  R ) )
18 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  R )  =  (
invr `  R )
)
19 subrgdv.2 . . . 4  |-  ./  =  (/r
`  R )
2019a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ./  =  (/r `  R ) )
2183ad2ant1 1021 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  R  e.  Ring )
22 eqid 2205 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2322subrgss 13984 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
24233ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  C_  ( Base `  R ) )
25 simp2 1001 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  A )
2624, 25sseldd 3194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  R )
)
27 eqid 2205 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
281, 27, 3subrguss 13998 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
29283ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  C_  (Unit `  R ) )
30 simp3 1002 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  U )
3129, 30sseldd 3194 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  Y  e.  (Unit `  R ) )
3215, 16, 17, 18, 20, 21, 26, 31dvrvald 13896 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) )
33 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( Base `  S )  =  (
Base `  S )
)
34 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( .r `  S )  =  ( .r `  S ) )
353a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  U  =  (Unit `  S ) )
36 eqidd 2206 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( invr `  S )  =  (
invr `  S )
)
37 subrgdv.4 . . . 4  |-  E  =  (/r `  S )
3837a1i 9 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  E  =  (/r
`  S ) )
391subrgring 13986 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
40393ad2ant1 1021 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  S  e.  Ring )
411subrgbas 13992 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
42413ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  A  =  ( Base `  S )
)
4325, 42eleqtrd 2284 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  X  e.  ( Base `  S )
)
4433, 34, 35, 36, 38, 40, 43, 30dvrvald 13896 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X E Y )  =  ( X ( .r `  S ) ( (
invr `  S ) `  Y ) ) )
4514, 32, 443eqtr4d 2248 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  U
)  ->  ( X  ./  Y )  =  ( X E Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   .rcmulr 12910   Ringcrg 13758  Unitcui 13849   invrcinvr 13882  /rcdvr 13893  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883  df-dvr 13894  df-subrg 13981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator