| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrvad2edg | Unicode version | ||
| Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 16014. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| umgrvad2edg.e |
|
| Ref | Expression |
|---|---|
| umgrvad2edg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | eqid 2229 |
. . . . . . . 8
| |
| 4 | umgrvad2edg.e |
. . . . . . . 8
| |
| 5 | 3, 4 | umgrpredgv 15953 |
. . . . . . 7
|
| 6 | 5 | ex 115 |
. . . . . 6
|
| 7 | 3, 4 | umgrpredgv 15953 |
. . . . . . 7
|
| 8 | 7 | ex 115 |
. . . . . 6
|
| 9 | 6, 8 | anim12d 335 |
. . . . 5
|
| 10 | 9 | adantr 276 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | simplr 528 |
. . . . 5
| |
| 13 | 4 | umgredgne 15956 |
. . . . . . 7
|
| 14 | 13 | necomd 2486 |
. . . . . 6
|
| 15 | 14 | ad2ant2r 509 |
. . . . 5
|
| 16 | 12, 15 | jca 306 |
. . . 4
|
| 17 | 16 | olcd 739 |
. . 3
|
| 18 | prneimg 3852 |
. . . . 5
| |
| 19 | 18 | imp 124 |
. . . 4
|
| 20 | prid1g 3770 |
. . . . 5
| |
| 21 | 20 | ad3antrrr 492 |
. . . 4
|
| 22 | prid2g 3771 |
. . . . 5
| |
| 23 | 22 | ad3antrrr 492 |
. . . 4
|
| 24 | 19, 21, 23 | 3jca 1201 |
. . 3
|
| 25 | 11, 17, 24 | syl2anc 411 |
. 2
|
| 26 | neeq1 2413 |
. . . 4
| |
| 27 | eleq2 2293 |
. . . 4
| |
| 28 | 26, 27 | 3anbi12d 1347 |
. . 3
|
| 29 | neeq2 2414 |
. . . 4
| |
| 30 | eleq2 2293 |
. . . 4
| |
| 31 | 29, 30 | 3anbi13d 1348 |
. . 3
|
| 32 | 28, 31 | rspc2ev 2922 |
. 2
|
| 33 | 1, 2, 25, 32 | syl2an23an 1333 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-edg 15867 df-umgren 15902 |
| This theorem is referenced by: umgr2edgneu 16018 |
| Copyright terms: Public domain | W3C validator |