ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrvad2edg Unicode version

Theorem umgrvad2edg 16017
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 16014. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgrvad2edg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
umgrvad2edg  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  E. x  e.  E  E. y  e.  E  ( x  =/=  y  /\  N  e.  x  /\  N  e.  y ) )
Distinct variable groups:    x, A, y   
x, B, y    x, E, y    x, G, y   
x, N, y

Proof of Theorem umgrvad2edg
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )  ->  { N ,  A }  e.  E
)
2 simpr 110 . 2  |-  ( ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )  ->  { B ,  N }  e.  E
)
3 eqid 2229 . . . . . . . 8  |-  (Vtx `  G )  =  (Vtx
`  G )
4 umgrvad2edg.e . . . . . . . 8  |-  E  =  (Edg `  G )
53, 4umgrpredgv 15953 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  { N ,  A }  e.  E
)  ->  ( N  e.  (Vtx `  G )  /\  A  e.  (Vtx `  G ) ) )
65ex 115 . . . . . 6  |-  ( G  e. UMGraph  ->  ( { N ,  A }  e.  E  ->  ( N  e.  (Vtx
`  G )  /\  A  e.  (Vtx `  G
) ) ) )
73, 4umgrpredgv 15953 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  { B ,  N }  e.  E
)  ->  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G ) ) )
87ex 115 . . . . . 6  |-  ( G  e. UMGraph  ->  ( { B ,  N }  e.  E  ->  ( B  e.  (Vtx
`  G )  /\  N  e.  (Vtx `  G
) ) ) )
96, 8anim12d 335 . . . . 5  |-  ( G  e. UMGraph  ->  ( ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
)  ->  ( ( N  e.  (Vtx `  G
)  /\  A  e.  (Vtx `  G ) )  /\  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G ) ) ) ) )
109adantr 276 . . . 4  |-  ( ( G  e. UMGraph  /\  A  =/= 
B )  ->  (
( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )  ->  ( ( N  e.  (Vtx `  G )  /\  A  e.  (Vtx `  G ) )  /\  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G )
) ) ) )
1110imp 124 . . 3  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  (
( N  e.  (Vtx
`  G )  /\  A  e.  (Vtx `  G
) )  /\  ( B  e.  (Vtx `  G
)  /\  N  e.  (Vtx `  G ) ) ) )
12 simplr 528 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  A  =/=  B )
134umgredgne 15956 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  { N ,  A }  e.  E
)  ->  N  =/=  A )
1413necomd 2486 . . . . . 6  |-  ( ( G  e. UMGraph  /\  { N ,  A }  e.  E
)  ->  A  =/=  N )
1514ad2ant2r 509 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  A  =/=  N )
1612, 15jca 306 . . . 4  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  ( A  =/=  B  /\  A  =/=  N ) )
1716olcd 739 . . 3  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  (
( N  =/=  B  /\  N  =/=  N
)  \/  ( A  =/=  B  /\  A  =/=  N ) ) )
18 prneimg 3852 . . . . 5  |-  ( ( ( N  e.  (Vtx
`  G )  /\  A  e.  (Vtx `  G
) )  /\  ( B  e.  (Vtx `  G
)  /\  N  e.  (Vtx `  G ) ) )  ->  ( (
( N  =/=  B  /\  N  =/=  N
)  \/  ( A  =/=  B  /\  A  =/=  N ) )  ->  { N ,  A }  =/=  { B ,  N } ) )
1918imp 124 . . . 4  |-  ( ( ( ( N  e.  (Vtx `  G )  /\  A  e.  (Vtx `  G ) )  /\  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G )
) )  /\  (
( N  =/=  B  /\  N  =/=  N
)  \/  ( A  =/=  B  /\  A  =/=  N ) ) )  ->  { N ,  A }  =/=  { B ,  N } )
20 prid1g 3770 . . . . 5  |-  ( N  e.  (Vtx `  G
)  ->  N  e.  { N ,  A }
)
2120ad3antrrr 492 . . . 4  |-  ( ( ( ( N  e.  (Vtx `  G )  /\  A  e.  (Vtx `  G ) )  /\  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G )
) )  /\  (
( N  =/=  B  /\  N  =/=  N
)  \/  ( A  =/=  B  /\  A  =/=  N ) ) )  ->  N  e.  { N ,  A }
)
22 prid2g 3771 . . . . 5  |-  ( N  e.  (Vtx `  G
)  ->  N  e.  { B ,  N }
)
2322ad3antrrr 492 . . . 4  |-  ( ( ( ( N  e.  (Vtx `  G )  /\  A  e.  (Vtx `  G ) )  /\  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G )
) )  /\  (
( N  =/=  B  /\  N  =/=  N
)  \/  ( A  =/=  B  /\  A  =/=  N ) ) )  ->  N  e.  { B ,  N }
)
2419, 21, 233jca 1201 . . 3  |-  ( ( ( ( N  e.  (Vtx `  G )  /\  A  e.  (Vtx `  G ) )  /\  ( B  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G )
) )  /\  (
( N  =/=  B  /\  N  =/=  N
)  \/  ( A  =/=  B  /\  A  =/=  N ) ) )  ->  ( { N ,  A }  =/=  { B ,  N }  /\  N  e.  { N ,  A }  /\  N  e.  { B ,  N } ) )
2511, 17, 24syl2anc 411 . 2  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  ( { N ,  A }  =/=  { B ,  N }  /\  N  e.  { N ,  A }  /\  N  e.  { B ,  N } ) )
26 neeq1 2413 . . . 4  |-  ( x  =  { N ,  A }  ->  ( x  =/=  y  <->  { N ,  A }  =/=  y
) )
27 eleq2 2293 . . . 4  |-  ( x  =  { N ,  A }  ->  ( N  e.  x  <->  N  e.  { N ,  A }
) )
2826, 273anbi12d 1347 . . 3  |-  ( x  =  { N ,  A }  ->  ( ( x  =/=  y  /\  N  e.  x  /\  N  e.  y )  <->  ( { N ,  A }  =/=  y  /\  N  e.  { N ,  A }  /\  N  e.  y ) ) )
29 neeq2 2414 . . . 4  |-  ( y  =  { B ,  N }  ->  ( { N ,  A }  =/=  y  <->  { N ,  A }  =/=  { B ,  N } ) )
30 eleq2 2293 . . . 4  |-  ( y  =  { B ,  N }  ->  ( N  e.  y  <->  N  e.  { B ,  N }
) )
3129, 303anbi13d 1348 . . 3  |-  ( y  =  { B ,  N }  ->  ( ( { N ,  A }  =/=  y  /\  N  e.  { N ,  A }  /\  N  e.  y )  <->  ( { N ,  A }  =/=  { B ,  N }  /\  N  e.  { N ,  A }  /\  N  e.  { B ,  N } ) ) )
3228, 31rspc2ev 2922 . 2  |-  ( ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E  /\  ( { N ,  A }  =/=  { B ,  N }  /\  N  e.  { N ,  A }  /\  N  e.  { B ,  N } ) )  ->  E. x  e.  E  E. y  e.  E  ( x  =/=  y  /\  N  e.  x  /\  N  e.  y
) )
331, 2, 25, 32syl2an23an 1333 1  |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E
) )  ->  E. x  e.  E  E. y  e.  E  ( x  =/=  y  /\  N  e.  x  /\  N  e.  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   {cpr 3667   ` cfv 5318  Vtxcvtx 15821  Edgcedg 15866  UMGraphcumgr 15900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-umgren 15902
This theorem is referenced by:  umgr2edgneu  16018
  Copyright terms: Public domain W3C validator