ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrvad2edg GIF version

Theorem umgrvad2edg 15974
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 15971. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgrvad2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrvad2edg (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦

Proof of Theorem umgrvad2edg
StepHypRef Expression
1 simpl 109 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝑁, 𝐴} ∈ 𝐸)
2 simpr 110 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝐵, 𝑁} ∈ 𝐸)
3 eqid 2209 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 umgrvad2edg.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
53, 4umgrpredgv 15910 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
65ex 115 . . . . . 6 (𝐺 ∈ UMGraph → ({𝑁, 𝐴} ∈ 𝐸 → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))))
73, 4umgrpredgv 15910 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝑁} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
87ex 115 . . . . . 6 (𝐺 ∈ UMGraph → ({𝐵, 𝑁} ∈ 𝐸 → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
96, 8anim12d 335 . . . . 5 (𝐺 ∈ UMGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
109adantr 276 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴𝐵) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
1110imp 124 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
12 simplr 528 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝐵)
134umgredgne 15913 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝑁𝐴)
1413necomd 2466 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝐴𝑁)
1514ad2ant2r 509 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝑁)
1612, 15jca 306 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐴𝐵𝐴𝑁))
1716olcd 738 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)))
18 prneimg 3831 . . . . 5 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) → (((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)) → {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
1918imp 124 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → {𝑁, 𝐴} ≠ {𝐵, 𝑁})
20 prid1g 3750 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝑁, 𝐴})
2120ad3antrrr 492 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝑁, 𝐴})
22 prid2g 3751 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝐵, 𝑁})
2322ad3antrrr 492 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝐵, 𝑁})
2419, 21, 233jca 1182 . . 3 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
2511, 17, 24syl2anc 411 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
26 neeq1 2393 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑥𝑦 ↔ {𝑁, 𝐴} ≠ 𝑦))
27 eleq2 2273 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑁𝑥𝑁 ∈ {𝑁, 𝐴}))
2826, 273anbi12d 1328 . . 3 (𝑥 = {𝑁, 𝐴} → ((𝑥𝑦𝑁𝑥𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦)))
29 neeq2 2394 . . . 4 (𝑦 = {𝐵, 𝑁} → ({𝑁, 𝐴} ≠ 𝑦 ↔ {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
30 eleq2 2273 . . . 4 (𝑦 = {𝐵, 𝑁} → (𝑁𝑦𝑁 ∈ {𝐵, 𝑁}))
3129, 303anbi13d 1329 . . 3 (𝑦 = {𝐵, 𝑁} → (({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})))
3228, 31rspc2ev 2902 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸 ∧ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
331, 2, 25, 32syl2an23an 1314 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712  w3a 983   = wceq 1375  wcel 2180  wne 2380  wrex 2489  {cpr 3647  cfv 5294  Vtxcvtx 15778  Edgcedg 15823  UMGraphcumgr 15857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-umgren 15859
This theorem is referenced by:  umgr2edgneu  15975
  Copyright terms: Public domain W3C validator