Proof of Theorem unitnegcl
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 2 | | ringgrp 13633 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 3 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (Base‘𝑅) = (Base‘𝑅)) |
| 4 | | unitnegcl.1 |
. . . . . . . 8
⊢ 𝑈 = (Unit‘𝑅) |
| 5 | 4 | a1i 9 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 6 | | ringsrg 13679 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 7 | 6 | adantr 276 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 8 | | simpr 110 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 9 | 3, 5, 7, 8 | unitcld 13740 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 10 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 11 | | unitnegcl.2 |
. . . . . . 7
⊢ 𝑁 = (invg‘𝑅) |
| 12 | 10, 11 | grpinvcl 13250 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
| 13 | 2, 9, 12 | syl2an2r 595 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
| 14 | | eqid 2196 |
. . . . . 6
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
| 15 | 10, 14, 11 | dvdsrneg 13735 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
| 16 | 13, 15 | syldan 282 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
| 17 | 10, 11 | grpinvinv 13269 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 18 | 2, 9, 17 | syl2an2r 595 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 19 | 16, 18 | breqtrd 4060 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)𝑋) |
| 20 | | eqidd 2197 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (1r‘𝑅) = (1r‘𝑅)) |
| 21 | | eqidd 2197 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (∥r‘𝑅) =
(∥r‘𝑅)) |
| 22 | | eqidd 2197 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (oppr‘𝑅) =
(oppr‘𝑅)) |
| 23 | | eqidd 2197 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
| 24 | 5, 20, 21, 22, 23, 7 | isunitd 13738 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 25 | 8, 24 | mpbid 147 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 26 | 25 | simpld 112 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 27 | 10, 14 | dvdsrtr 13733 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋)(∥r‘𝑅)𝑋 ∧ 𝑋(∥r‘𝑅)(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
| 28 | 1, 19, 26, 27 | syl3anc 1249 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
| 29 | | eqid 2196 |
. . . . 5
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 30 | 29 | opprring 13711 |
. . . 4
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
| 31 | 30 | adantr 276 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (oppr‘𝑅) ∈ Ring) |
| 32 | 29, 10 | opprbasg 13707 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
| 33 | 32 | eleq2d 2266 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → ((𝑁‘𝑋) ∈ (Base‘𝑅) ↔ (𝑁‘𝑋) ∈
(Base‘(oppr‘𝑅)))) |
| 34 | 33 | adantr 276 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝑁‘𝑋) ∈ (Base‘𝑅) ↔ (𝑁‘𝑋) ∈
(Base‘(oppr‘𝑅)))) |
| 35 | 13, 34 | mpbid 147 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈
(Base‘(oppr‘𝑅))) |
| 36 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) |
| 37 | | eqid 2196 |
. . . . . . 7
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) |
| 38 | | eqid 2196 |
. . . . . . 7
⊢
(invg‘(oppr‘𝑅)) =
(invg‘(oppr‘𝑅)) |
| 39 | 36, 37, 38 | dvdsrneg 13735 |
. . . . . 6
⊢
(((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋) ∈
(Base‘(oppr‘𝑅))) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))((invg‘(oppr‘𝑅))‘(𝑁‘𝑋))) |
| 40 | 30, 35, 39 | syl2an2r 595 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))((invg‘(oppr‘𝑅))‘(𝑁‘𝑋))) |
| 41 | 29, 11 | opprnegg 13715 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑁 =
(invg‘(oppr‘𝑅))) |
| 42 | 41 | fveq1d 5563 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑁‘(𝑁‘𝑋)) =
((invg‘(oppr‘𝑅))‘(𝑁‘𝑋))) |
| 43 | 42 | breq2d 4046 |
. . . . . 6
⊢ (𝑅 ∈ Ring → ((𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))
↔ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))((invg‘(oppr‘𝑅))‘(𝑁‘𝑋)))) |
| 44 | 43 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))
↔ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))((invg‘(oppr‘𝑅))‘(𝑁‘𝑋)))) |
| 45 | 40, 44 | mpbird 167 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
| 46 | 45, 18 | breqtrd 4060 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋) |
| 47 | 25 | simprd 114 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 48 | 36, 37 | dvdsrtr 13733 |
. . 3
⊢
(((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋 ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 49 | 31, 46, 47, 48 | syl3anc 1249 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 50 | 5, 20, 21, 22, 23, 7 | isunitd 13738 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝑁‘𝑋) ∈ 𝑈 ↔ ((𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅) ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 51 | 28, 49, 50 | mpbir2and 946 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |