ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitnegcl GIF version

Theorem unitnegcl 13626
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1 𝑈 = (Unit‘𝑅)
unitnegcl.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
unitnegcl ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 109 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
2 ringgrp 13497 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3 eqidd 2194 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (Base‘𝑅) = (Base‘𝑅))
4 unitnegcl.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
54a1i 9 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑈 = (Unit‘𝑅))
6 ringsrg 13543 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
76adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑅 ∈ SRing)
8 simpr 110 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋𝑈)
93, 5, 7, 8unitcld 13604 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑅))
10 eqid 2193 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
11 unitnegcl.2 . . . . . . 7 𝑁 = (invg𝑅)
1210, 11grpinvcl 13120 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁𝑋) ∈ (Base‘𝑅))
132, 9, 12syl2an2r 595 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ (Base‘𝑅))
14 eqid 2193 . . . . . 6 (∥r𝑅) = (∥r𝑅)
1510, 14, 11dvdsrneg 13599 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
1613, 15syldan 282 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
1710, 11grpinvinv 13139 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁𝑋)) = 𝑋)
182, 9, 17syl2an2r 595 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁‘(𝑁𝑋)) = 𝑋)
1916, 18breqtrd 4055 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)𝑋)
20 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (1r𝑅) = (1r𝑅))
21 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (∥r𝑅) = (∥r𝑅))
22 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (oppr𝑅) = (oppr𝑅))
23 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
245, 20, 21, 22, 23, 7isunitd 13602 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅))))
258, 24mpbid 147 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2625simpld 112 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r𝑅)(1r𝑅))
2710, 14dvdsrtr 13597 . . 3 ((𝑅 ∈ Ring ∧ (𝑁𝑋)(∥r𝑅)𝑋𝑋(∥r𝑅)(1r𝑅)) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
281, 19, 26, 27syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
29 eqid 2193 . . . . 5 (oppr𝑅) = (oppr𝑅)
3029opprring 13575 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
3130adantr 276 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (oppr𝑅) ∈ Ring)
3229, 10opprbasg 13571 . . . . . . . . 9 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
3332eleq2d 2263 . . . . . . . 8 (𝑅 ∈ Ring → ((𝑁𝑋) ∈ (Base‘𝑅) ↔ (𝑁𝑋) ∈ (Base‘(oppr𝑅))))
3433adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝑁𝑋) ∈ (Base‘𝑅) ↔ (𝑁𝑋) ∈ (Base‘(oppr𝑅))))
3513, 34mpbid 147 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ (Base‘(oppr𝑅)))
36 eqid 2193 . . . . . . 7 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
37 eqid 2193 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
38 eqid 2193 . . . . . . 7 (invg‘(oppr𝑅)) = (invg‘(oppr𝑅))
3936, 37, 38dvdsrneg 13599 . . . . . 6 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘(oppr𝑅))) → (𝑁𝑋)(∥r‘(oppr𝑅))((invg‘(oppr𝑅))‘(𝑁𝑋)))
4030, 35, 39syl2an2r 595 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))((invg‘(oppr𝑅))‘(𝑁𝑋)))
4129, 11opprnegg 13579 . . . . . . . 8 (𝑅 ∈ Ring → 𝑁 = (invg‘(oppr𝑅)))
4241fveq1d 5556 . . . . . . 7 (𝑅 ∈ Ring → (𝑁‘(𝑁𝑋)) = ((invg‘(oppr𝑅))‘(𝑁𝑋)))
4342breq2d 4041 . . . . . 6 (𝑅 ∈ Ring → ((𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)) ↔ (𝑁𝑋)(∥r‘(oppr𝑅))((invg‘(oppr𝑅))‘(𝑁𝑋))))
4443adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)) ↔ (𝑁𝑋)(∥r‘(oppr𝑅))((invg‘(oppr𝑅))‘(𝑁𝑋))))
4540, 44mpbird 167 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
4645, 18breqtrd 4055 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))𝑋)
4725simprd 114 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
4836, 37dvdsrtr 13597 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
4931, 46, 47, 48syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
505, 20, 21, 22, 23, 7isunitd 13602 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝑁𝑋) ∈ 𝑈 ↔ ((𝑁𝑋)(∥r𝑅)(1r𝑅) ∧ (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))))
5128, 49, 50mpbir2and 946 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  Basecbs 12618  Grpcgrp 13072  invgcminusg 13073  1rcur 13455  SRingcsrg 13459  Ringcrg 13492  opprcoppr 13563  rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  aprsym  13780
  Copyright terms: Public domain W3C validator