ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abslt GIF version

Theorem abslt 10853
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))

Proof of Theorem abslt
StepHypRef Expression
1 simpll 518 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℝ)
21renegcld 8135 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ∈ ℝ)
31recnd 7787 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℂ)
4 abscl 10816 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
53, 4syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) ∈ ℝ)
6 simplr 519 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 ∈ ℝ)
7 leabs 10839 . . . . . . 7 (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
82, 7syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ≤ (abs‘-𝐴))
9 absneg 10815 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
103, 9syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘-𝐴) = (abs‘𝐴))
118, 10breqtrd 3949 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ≤ (abs‘𝐴))
12 simpr 109 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) < 𝐵)
132, 5, 6, 11, 12lelttrd 7880 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 < 𝐵)
14 leabs 10839 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
1514ad2antrr 479 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ≤ (abs‘𝐴))
161, 5, 6, 15, 12lelttrd 7880 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 < 𝐵)
1713, 16jca 304 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (-𝐴 < 𝐵𝐴 < 𝐵))
18 simpll 518 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
19 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℝ)
2019recnd 7787 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℂ)
2120, 9syl 14 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = (abs‘𝐴))
2219renegcld 8135 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → -𝐴 ∈ ℝ)
23 0red 7760 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ∈ ℝ)
24 ltabs 10852 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
2519, 23, 24ltled 7874 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ≤ 0)
2619le0neg1d 8272 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2725, 26mpbid 146 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ≤ -𝐴)
28 absid 10836 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (abs‘-𝐴) = -𝐴)
2922, 27, 28syl2anc 408 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = -𝐴)
3021, 29eqtr3d 2172 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) = -𝐴)
3118, 30sylan 281 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) = -𝐴)
32 simplrl 524 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) ∧ 𝐴 < (abs‘𝐴)) → -𝐴 < 𝐵)
3331, 32eqbrtrd 3945 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) < 𝐵)
34 simpr 109 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) < 𝐵)
35 simprr 521 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → 𝐴 < 𝐵)
36 simplr 519 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → 𝐵 ∈ ℝ)
3718recnd 7787 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → 𝐴 ∈ ℂ)
3837, 4syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → (abs‘𝐴) ∈ ℝ)
39 axltwlin 7825 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < (abs‘𝐴) ∨ (abs‘𝐴) < 𝐵)))
4018, 36, 38, 39syl3anc 1216 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → (𝐴 < 𝐵 → (𝐴 < (abs‘𝐴) ∨ (abs‘𝐴) < 𝐵)))
4135, 40mpd 13 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → (𝐴 < (abs‘𝐴) ∨ (abs‘𝐴) < 𝐵))
4233, 34, 41mpjaodan 787 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 < 𝐵𝐴 < 𝐵)) → (abs‘𝐴) < 𝐵)
4317, 42impbida 585 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐴 < 𝐵𝐴 < 𝐵)))
44 ltnegcon1 8218 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴))
4544anbi1d 460 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 < 𝐵𝐴 < 𝐵) ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
4643, 45bitrd 187 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3924  cfv 5118  cc 7611  cr 7612  0cc0 7613   < clt 7793  cle 7794  -cneg 7927  abscabs 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  absdiflt  10857  abslti  10903  absltd  10939
  Copyright terms: Public domain W3C validator