ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitscmp GIF version

Theorem bitscmp 12344
Description: The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 12343, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))

Proof of Theorem bitscmp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsval2 12330 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 2z 9420 . . . . . . . . . 10 2 ∈ ℤ
32a1i 9 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
4 simpl 109 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℤ)
5 2nn 9218 . . . . . . . . . . . . 13 2 ∈ ℕ
65a1i 9 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℕ)
7 simpr 110 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
86, 7nnexpcld 10862 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
9 znq 9765 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (2↑𝑚) ∈ ℕ) → (𝑁 / (2↑𝑚)) ∈ ℚ)
104, 8, 9syl2anc 411 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) ∈ ℚ)
1110flqcld 10442 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
12 dvdsnegb 12194 . . . . . . . . 9 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
133, 11, 12syl2anc 411 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1413notbid 669 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1511znegcld 9517 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
16 oddm1even 12261 . . . . . . . . 9 (-(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
1715, 16syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
18 flqltp1 10444 . . . . . . . . . . . . . . . 16 ((𝑁 / (2↑𝑚)) ∈ ℚ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
1910, 18syl 14 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
204zred 9515 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℝ)
2120, 8nndivred 9106 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) ∈ ℝ)
2211zred 9515 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
23 1red 8107 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
2422, 23readdcld 8122 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) + 1) ∈ ℝ)
2521, 24ltnegd 8616 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚))))
2619, 25mpbid 147 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))
2722recnd 8121 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
2823recnd 8121 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2927, 28negdi2d 8417 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
3020recnd 8121 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℂ)
318nncnd 9070 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
328nnap0d 9102 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) # 0)
3330, 31, 32divnegapd 8896 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚)))
3426, 29, 333brtr3d 4082 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))
35 1zzd 9419 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
3615, 35zsubcld 9520 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ)
3736zred 9515 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℝ)
3820renegcld 8472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℝ)
398nnrpd 9836 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℝ+)
4037, 38, 39ltmuldivd 9886 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚))))
4134, 40mpbird 167 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁)
428nnzd 9514 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
4336, 42zmulcld 9521 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ)
444znegcld 9517 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℤ)
45 zltlem1 9450 . . . . . . . . . . . . 13 ((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4643, 44, 45syl2anc 411 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4741, 46mpbid 147 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))
4838, 23resubcld 8473 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) ∈ ℝ)
4937, 48, 39lemuldivd 9888 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚))))
5047, 49mpbid 147 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))
51 flqle 10443 . . . . . . . . . . . . . . . . 17 ((𝑁 / (2↑𝑚)) ∈ ℚ → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5210, 51syl 14 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5322, 21lenegd 8617 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))))
5452, 53mpbid 147 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5533, 54eqbrtrrd 4075 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5622renegcld 8472 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
5738, 56, 39ledivmuld 9892 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5855, 57mpbid 147 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
5942, 15zmulcld 9521 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ)
60 zlem1lt 9449 . . . . . . . . . . . . . 14 ((-𝑁 ∈ ℤ ∧ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6144, 59, 60syl2anc 411 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6258, 61mpbid 147 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
6348, 56, 39ltdivmuld 9890 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6462, 63mpbird 167 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))))
6527negcld 8390 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
6665, 28npcand 8407 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1) = -(⌊‘(𝑁 / (2↑𝑚))))
6764, 66breqtrrd 4079 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))
6844, 35zsubcld 9520 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) ∈ ℤ)
69 znq 9765 . . . . . . . . . . . 12 (((-𝑁 − 1) ∈ ℤ ∧ (2↑𝑚) ∈ ℕ) → ((-𝑁 − 1) / (2↑𝑚)) ∈ ℚ)
7068, 8, 69syl2anc 411 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) ∈ ℚ)
71 flqbi 10455 . . . . . . . . . . 11 ((((-𝑁 − 1) / (2↑𝑚)) ∈ ℚ ∧ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
7270, 36, 71syl2anc 411 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
7350, 67, 72mpbir2and 947 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
7473breq2d 4063 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
7517, 74bitr4d 191 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
761, 14, 753bitrd 214 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7776notbid 669 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7877pm5.32da 452 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
79 znegcl 9423 . . . . . 6 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
80 1zzd 9419 . . . . . 6 (𝑁 ∈ ℤ → 1 ∈ ℤ)
8179, 80zsubcld 9520 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
8281biantrurd 305 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
8378, 82bitrd 188 . . 3 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
84 eldif 3179 . . 3 (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)))
85 bitsval 12329 . . . 4 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
86 3anass 985 . . . 4 (((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8785, 86bitri 184 . . 3 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8883, 84, 873bitr4g 223 . 2 (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ 𝑚 ∈ (bits‘(-𝑁 − 1))))
8988eqrdv 2204 1 (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cdif 3167   class class class wbr 4051  cfv 5280  (class class class)co 5957  1c1 7946   + caddc 7948   · cmul 7950   < clt 8127  cle 8128  cmin 8263  -cneg 8264   / cdiv 8765  cn 9056  2c2 9107  0cn0 9315  cz 9392  cq 9760  cfl 10433  cexp 10705  cdvds 12173  bitscbits 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fl 10435  df-seqfrec 10615  df-exp 10706  df-dvds 12174  df-bits 12327
This theorem is referenced by:  m1bits  12346
  Copyright terms: Public domain W3C validator