| Step | Hyp | Ref
| Expression |
| 1 | | bitsval2 12111 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑚 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (⌊‘(𝑁
/ (2↑𝑚))))) |
| 2 | | 2z 9356 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 3 | 2 | a1i 9 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 2 ∈ ℤ) |
| 4 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
| 5 | | 2nn 9154 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
| 6 | 5 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 2 ∈ ℕ) |
| 7 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑚 ∈
ℕ0) |
| 8 | 6, 7 | nnexpcld 10789 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℕ) |
| 9 | | znq 9700 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧
(2↑𝑚) ∈ ℕ)
→ (𝑁 / (2↑𝑚)) ∈
ℚ) |
| 10 | 4, 8, 9 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑁 / (2↑𝑚)) ∈
ℚ) |
| 11 | 10 | flqcld 10369 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ∈
ℤ) |
| 12 | | dvdsnegb 11975 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥
(⌊‘(𝑁 /
(2↑𝑚))) ↔ 2
∥ -(⌊‘(𝑁
/ (2↑𝑚))))) |
| 13 | 3, 11, 12 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))))) |
| 14 | 13 | notbid 668 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥
-(⌊‘(𝑁 /
(2↑𝑚))))) |
| 15 | 11 | znegcld 9452 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(⌊‘(𝑁 /
(2↑𝑚))) ∈
ℤ) |
| 16 | | oddm1even 12042 |
. . . . . . . . 9
⊢
(-(⌊‘(𝑁
/ (2↑𝑚))) ∈
ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1))) |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1))) |
| 18 | | flqltp1 10371 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 / (2↑𝑚)) ∈ ℚ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1)) |
| 19 | 10, 18 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1)) |
| 20 | 4 | zred 9450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑁 ∈
ℝ) |
| 21 | 20, 8 | nndivred 9042 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑁 / (2↑𝑚)) ∈
ℝ) |
| 22 | 11 | zred 9450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ∈
ℝ) |
| 23 | | 1red 8043 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 1 ∈ ℝ) |
| 24 | 22, 23 | readdcld 8058 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((⌊‘(𝑁 /
(2↑𝑚))) + 1) ∈
ℝ) |
| 25 | 21, 24 | ltnegd 8552 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))) |
| 26 | 19, 25 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -((⌊‘(𝑁
/ (2↑𝑚))) + 1) <
-(𝑁 / (2↑𝑚))) |
| 27 | 22 | recnd 8057 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ∈
ℂ) |
| 28 | 23 | recnd 8057 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 1 ∈ ℂ) |
| 29 | 27, 28 | negdi2d 8353 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -((⌊‘(𝑁
/ (2↑𝑚))) + 1) =
(-(⌊‘(𝑁 /
(2↑𝑚))) −
1)) |
| 30 | 20 | recnd 8057 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
| 31 | 8 | nncnd 9006 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℂ) |
| 32 | 8 | nnap0d 9038 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) #
0) |
| 33 | 30, 31, 32 | divnegapd 8832 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚))) |
| 34 | 26, 29, 33 | 3brtr3d 4065 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
< (-𝑁 / (2↑𝑚))) |
| 35 | | 1zzd 9355 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 1 ∈ ℤ) |
| 36 | 15, 35 | zsubcld 9455 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
∈ ℤ) |
| 37 | 36 | zred 9450 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
∈ ℝ) |
| 38 | 20 | renegcld 8408 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -𝑁 ∈
ℝ) |
| 39 | 8 | nnrpd 9771 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℝ+) |
| 40 | 37, 38, 39 | ltmuldivd 9821 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))) |
| 41 | 34, 40 | mpbird 167 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
· (2↑𝑚)) <
-𝑁) |
| 42 | 8 | nnzd 9449 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℤ) |
| 43 | 36, 42 | zmulcld 9456 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
· (2↑𝑚)) ∈
ℤ) |
| 44 | 4 | znegcld 9452 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -𝑁 ∈
ℤ) |
| 45 | | zltlem1 9385 |
. . . . . . . . . . . . 13
⊢
((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) →
(((-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
· (2↑𝑚)) <
-𝑁 ↔
((-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
· (2↑𝑚)) ≤
(-𝑁 −
1))) |
| 46 | 43, 44, 45 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))) |
| 47 | 41, 46 | mpbid 147 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
· (2↑𝑚)) ≤
(-𝑁 −
1)) |
| 48 | 38, 23 | resubcld 8409 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 − 1)
∈ ℝ) |
| 49 | 37, 48, 39 | lemuldivd 9823 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))) |
| 50 | 47, 49 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
≤ ((-𝑁 − 1) /
(2↑𝑚))) |
| 51 | | flqle 10370 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 / (2↑𝑚)) ∈ ℚ →
(⌊‘(𝑁 /
(2↑𝑚))) ≤ (𝑁 / (2↑𝑚))) |
| 52 | 10, 51 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ≤ (𝑁 / (2↑𝑚))) |
| 53 | 22, 21 | lenegd 8553 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((⌊‘(𝑁 /
(2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))) |
| 54 | 52, 53 | mpbid 147 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))) |
| 55 | 33, 54 | eqbrtrrd 4058 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))) |
| 56 | 22 | renegcld 8408 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(⌊‘(𝑁 /
(2↑𝑚))) ∈
ℝ) |
| 57 | 38, 56, 39 | ledivmuld 9827 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))) |
| 58 | 55, 57 | mpbid 147 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -𝑁 ≤
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚))))) |
| 59 | 42, 15 | zmulcld 9456 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ∈
ℤ) |
| 60 | | zlem1lt 9384 |
. . . . . . . . . . . . . 14
⊢ ((-𝑁 ∈ ℤ ∧
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ∈
ℤ) → (-𝑁 ≤
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ↔
(-𝑁 − 1) <
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))))) |
| 61 | 44, 59, 60 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 ≤
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ↔
(-𝑁 − 1) <
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))))) |
| 62 | 58, 61 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 − 1) <
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚))))) |
| 63 | 48, 56, 39 | ltdivmuld 9825 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-𝑁 − 1) /
(2↑𝑚)) <
-(⌊‘(𝑁 /
(2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))))) |
| 64 | 62, 63 | mpbird 167 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 − 1) /
(2↑𝑚)) <
-(⌊‘(𝑁 /
(2↑𝑚)))) |
| 65 | 27 | negcld 8326 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(⌊‘(𝑁 /
(2↑𝑚))) ∈
ℂ) |
| 66 | 65, 28 | npcand 8343 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1) +
1) = -(⌊‘(𝑁 /
(2↑𝑚)))) |
| 67 | 64, 66 | breqtrrd 4062 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 − 1) /
(2↑𝑚)) <
((-(⌊‘(𝑁 /
(2↑𝑚))) − 1) +
1)) |
| 68 | 44, 35 | zsubcld 9455 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 − 1)
∈ ℤ) |
| 69 | | znq 9700 |
. . . . . . . . . . . 12
⊢ (((-𝑁 − 1) ∈ ℤ ∧
(2↑𝑚) ∈ ℕ)
→ ((-𝑁 − 1) /
(2↑𝑚)) ∈
ℚ) |
| 70 | 68, 8, 69 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 − 1) /
(2↑𝑚)) ∈
ℚ) |
| 71 | | flqbi 10382 |
. . . . . . . . . . 11
⊢
((((-𝑁 − 1) /
(2↑𝑚)) ∈ ℚ
∧ (-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔
((-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
≤ ((-𝑁 − 1) /
(2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1)))) |
| 72 | 70, 36, 71 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((⌊‘((-𝑁
− 1) / (2↑𝑚))) =
(-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
↔ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
≤ ((-𝑁 − 1) /
(2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1)))) |
| 73 | 50, 67, 72 | mpbir2and 946 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘((-𝑁
− 1) / (2↑𝑚))) =
(-(⌊‘(𝑁 /
(2↑𝑚))) −
1)) |
| 74 | 73 | breq2d 4046 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1))) |
| 75 | 17, 74 | bitr4d 191 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))) |
| 76 | 1, 14, 75 | 3bitrd 214 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑚 ∈
(bits‘𝑁) ↔ 2
∥ (⌊‘((-𝑁
− 1) / (2↑𝑚))))) |
| 77 | 76 | notbid 668 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 𝑚 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))) |
| 78 | 77 | pm5.32da 452 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0
∧ ¬ 𝑚 ∈
(bits‘𝑁)) ↔
(𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))) |
| 79 | | znegcl 9359 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
| 80 | | 1zzd 9355 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 1 ∈
ℤ) |
| 81 | 79, 80 | zsubcld 9455 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (-𝑁 − 1) ∈
ℤ) |
| 82 | 81 | biantrurd 305 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))) |
| 83 | 78, 82 | bitrd 188 |
. . 3
⊢ (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0
∧ ¬ 𝑚 ∈
(bits‘𝑁)) ↔
((-𝑁 − 1) ∈
ℤ ∧ (𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))) |
| 84 | | eldif 3166 |
. . 3
⊢ (𝑚 ∈ (ℕ0
∖ (bits‘𝑁))
↔ (𝑚 ∈
ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁))) |
| 85 | | bitsval 12110 |
. . . 4
⊢ (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧
𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))) |
| 86 | | 3anass 984 |
. . . 4
⊢ (((-𝑁 − 1) ∈ ℤ ∧
𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))) |
| 87 | 85, 86 | bitri 184 |
. . 3
⊢ (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧
(𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))) |
| 88 | 83, 84, 87 | 3bitr4g 223 |
. 2
⊢ (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0
∖ (bits‘𝑁))
↔ 𝑚 ∈
(bits‘(-𝑁 −
1)))) |
| 89 | 88 | eqrdv 2194 |
1
⊢ (𝑁 ∈ ℤ →
(ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1))) |