ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dich0 GIF version

Theorem dich0 14806
Description: Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
Assertion
Ref Expression
dich0 (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem dich0
StepHypRef Expression
1 breq1 4032 . . . . . 6 (𝑧 = (𝑥𝑦) → (𝑧 ≤ 0 ↔ (𝑥𝑦) ≤ 0))
2 breq2 4033 . . . . . 6 (𝑧 = (𝑥𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝑦)))
31, 2orbi12d 794 . . . . 5 (𝑧 = (𝑥𝑦) → ((𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ((𝑥𝑦) ≤ 0 ∨ 0 ≤ (𝑥𝑦))))
4 simpl 109 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))
5 resubcl 8283 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
65adantl 277 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
73, 4, 6rspcdva 2869 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≤ 0 ∨ 0 ≤ (𝑥𝑦)))
8 simprl 529 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
9 simprr 531 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
108, 9suble0d 8555 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≤ 0 ↔ 𝑥𝑦))
118, 9subge0d 8554 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (0 ≤ (𝑥𝑦) ↔ 𝑦𝑥))
1210, 11orbi12d 794 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝑥𝑦) ≤ 0 ∨ 0 ≤ (𝑥𝑦)) ↔ (𝑥𝑦𝑦𝑥)))
137, 12mpbid 147 . . 3 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦𝑦𝑥))
1413ralrimivva 2576 . 2 (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥))
15 breq2 4033 . . . . 5 (𝑦 = 0 → (𝑧𝑦𝑧 ≤ 0))
16 breq1 4032 . . . . 5 (𝑦 = 0 → (𝑦𝑧 ↔ 0 ≤ 𝑧))
1715, 16orbi12d 794 . . . 4 (𝑦 = 0 → ((𝑧𝑦𝑦𝑧) ↔ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)))
18 breq1 4032 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
19 breq2 4033 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
2018, 19orbi12d 794 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑦𝑦𝑥) ↔ (𝑧𝑦𝑦𝑧)))
2120ralbidv 2494 . . . . 5 (𝑥 = 𝑧 → (∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ↔ ∀𝑦 ∈ ℝ (𝑧𝑦𝑦𝑧)))
2221rspccva 2863 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑦 ∈ ℝ (𝑧𝑦𝑦𝑧))
23 0red 8020 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ∧ 𝑧 ∈ ℝ) → 0 ∈ ℝ)
2417, 22, 23rspcdva 2869 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))
2524ralrimiva 2567 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))
2614, 25impbii 126 1 (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029  (class class class)co 5918  cr 7871  0cc0 7872  cle 8055  cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193
This theorem is referenced by:  ivthdich  14807
  Copyright terms: Public domain W3C validator