ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dich0 GIF version

Theorem dich0 15291
Description: Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
Assertion
Ref Expression
dich0 (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem dich0
StepHypRef Expression
1 breq1 4065 . . . . . 6 (𝑧 = (𝑥𝑦) → (𝑧 ≤ 0 ↔ (𝑥𝑦) ≤ 0))
2 breq2 4066 . . . . . 6 (𝑧 = (𝑥𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝑦)))
31, 2orbi12d 797 . . . . 5 (𝑧 = (𝑥𝑦) → ((𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ((𝑥𝑦) ≤ 0 ∨ 0 ≤ (𝑥𝑦))))
4 simpl 109 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))
5 resubcl 8378 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
65adantl 277 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
73, 4, 6rspcdva 2892 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≤ 0 ∨ 0 ≤ (𝑥𝑦)))
8 simprl 529 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
9 simprr 531 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
108, 9suble0d 8651 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≤ 0 ↔ 𝑥𝑦))
118, 9subge0d 8650 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (0 ≤ (𝑥𝑦) ↔ 𝑦𝑥))
1210, 11orbi12d 797 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝑥𝑦) ≤ 0 ∨ 0 ≤ (𝑥𝑦)) ↔ (𝑥𝑦𝑦𝑥)))
137, 12mpbid 147 . . 3 ((∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦𝑦𝑥))
1413ralrimivva 2592 . 2 (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥))
15 breq2 4066 . . . . 5 (𝑦 = 0 → (𝑧𝑦𝑧 ≤ 0))
16 breq1 4065 . . . . 5 (𝑦 = 0 → (𝑦𝑧 ↔ 0 ≤ 𝑧))
1715, 16orbi12d 797 . . . 4 (𝑦 = 0 → ((𝑧𝑦𝑦𝑧) ↔ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)))
18 breq1 4065 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
19 breq2 4066 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
2018, 19orbi12d 797 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑦𝑦𝑥) ↔ (𝑧𝑦𝑦𝑧)))
2120ralbidv 2510 . . . . 5 (𝑥 = 𝑧 → (∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ↔ ∀𝑦 ∈ ℝ (𝑧𝑦𝑦𝑧)))
2221rspccva 2886 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑦 ∈ ℝ (𝑧𝑦𝑦𝑧))
23 0red 8115 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ∧ 𝑧 ∈ ℝ) → 0 ∈ ℝ)
2417, 22, 23rspcdva 2892 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))
2524ralrimiva 2583 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))
2614, 25impbii 126 1 (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 712   = wceq 1375  wcel 2180  wral 2488   class class class wbr 4062  (class class class)co 5974  cr 7966  0cc0 7967  cle 8150  cmin 8285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288
This theorem is referenced by:  ivthdich  15292
  Copyright terms: Public domain W3C validator