Proof of Theorem dich0
Step | Hyp | Ref
| Expression |
1 | | breq1 4032 |
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 ≤ 0 ↔ (𝑥 − 𝑦) ≤ 0)) |
2 | | breq2 4033 |
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 − 𝑦))) |
3 | 1, 2 | orbi12d 794 |
. . . . 5
⊢ (𝑧 = (𝑥 − 𝑦) → ((𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ((𝑥 − 𝑦) ≤ 0 ∨ 0 ≤ (𝑥 − 𝑦)))) |
4 | | simpl 109 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
∀𝑧 ∈ ℝ
(𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
5 | | resubcl 8283 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
6 | 5 | adantl 277 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
7 | 3, 4, 6 | rspcdva 2869 |
. . . 4
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) ≤ 0 ∨ 0 ≤ (𝑥 − 𝑦))) |
8 | | simprl 529 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈
ℝ) |
9 | | simprr 531 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈
ℝ) |
10 | 8, 9 | suble0d 8555 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) ≤ 0 ↔ 𝑥 ≤ 𝑦)) |
11 | 8, 9 | subge0d 8554 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (0 ≤
(𝑥 − 𝑦) ↔ 𝑦 ≤ 𝑥)) |
12 | 10, 11 | orbi12d 794 |
. . . 4
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(((𝑥 − 𝑦) ≤ 0 ∨ 0 ≤ (𝑥 − 𝑦)) ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
13 | 7, 12 | mpbid 147 |
. . 3
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
14 | 13 | ralrimivva 2576 |
. 2
⊢
(∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) →
∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
15 | | breq2 4033 |
. . . . 5
⊢ (𝑦 = 0 → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 0)) |
16 | | breq1 4032 |
. . . . 5
⊢ (𝑦 = 0 → (𝑦 ≤ 𝑧 ↔ 0 ≤ 𝑧)) |
17 | 15, 16 | orbi12d 794 |
. . . 4
⊢ (𝑦 = 0 → ((𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧) ↔ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))) |
18 | | breq1 4032 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) |
19 | | breq2 4033 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑧)) |
20 | 18, 19 | orbi12d 794 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧))) |
21 | 20 | ralbidv 2494 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ ∀𝑦 ∈ ℝ (𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧))) |
22 | 21 | rspccva 2863 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑦 ∈ ℝ (𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧)) |
23 | | 0red 8020 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℝ) → 0 ∈
ℝ) |
24 | 17, 22, 23 | rspcdva 2869 |
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
25 | 24 | ralrimiva 2567 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
26 | 14, 25 | impbii 126 |
1
⊢
(∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ↔
∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |