Proof of Theorem dich0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 ≤ 0 ↔ (𝑥 − 𝑦) ≤ 0)) | 
| 2 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 − 𝑦))) | 
| 3 | 1, 2 | orbi12d 794 | 
. . . . 5
⊢ (𝑧 = (𝑥 − 𝑦) → ((𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ((𝑥 − 𝑦) ≤ 0 ∨ 0 ≤ (𝑥 − 𝑦)))) | 
| 4 |   | simpl 109 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
∀𝑧 ∈ ℝ
(𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) | 
| 5 |   | resubcl 8290 | 
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | 
| 6 | 5 | adantl 277 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) | 
| 7 | 3, 4, 6 | rspcdva 2873 | 
. . . 4
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) ≤ 0 ∨ 0 ≤ (𝑥 − 𝑦))) | 
| 8 |   | simprl 529 | 
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈
ℝ) | 
| 9 |   | simprr 531 | 
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈
ℝ) | 
| 10 | 8, 9 | suble0d 8563 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) ≤ 0 ↔ 𝑥 ≤ 𝑦)) | 
| 11 | 8, 9 | subge0d 8562 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (0 ≤
(𝑥 − 𝑦) ↔ 𝑦 ≤ 𝑥)) | 
| 12 | 10, 11 | orbi12d 794 | 
. . . 4
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(((𝑥 − 𝑦) ≤ 0 ∨ 0 ≤ (𝑥 − 𝑦)) ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | 
| 13 | 7, 12 | mpbid 147 | 
. . 3
⊢
((∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | 
| 14 | 13 | ralrimivva 2579 | 
. 2
⊢
(∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) →
∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | 
| 15 |   | breq2 4037 | 
. . . . 5
⊢ (𝑦 = 0 → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 0)) | 
| 16 |   | breq1 4036 | 
. . . . 5
⊢ (𝑦 = 0 → (𝑦 ≤ 𝑧 ↔ 0 ≤ 𝑧)) | 
| 17 | 15, 16 | orbi12d 794 | 
. . . 4
⊢ (𝑦 = 0 → ((𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧) ↔ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧))) | 
| 18 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | 
| 19 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑧)) | 
| 20 | 18, 19 | orbi12d 794 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧))) | 
| 21 | 20 | ralbidv 2497 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ ∀𝑦 ∈ ℝ (𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧))) | 
| 22 | 21 | rspccva 2867 | 
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑦 ∈ ℝ (𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧)) | 
| 23 |   | 0red 8027 | 
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℝ) → 0 ∈
ℝ) | 
| 24 | 17, 22, 23 | rspcdva 2873 | 
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) | 
| 25 | 24 | ralrimiva 2570 | 
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) | 
| 26 | 14, 25 | impbii 126 | 
1
⊢
(∀𝑧 ∈
ℝ (𝑧 ≤ 0 ∨ 0
≤ 𝑧) ↔
∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |