ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdichlem GIF version

Theorem ivthdichlem 15167
Description: Lemma for ivthdich 15169. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
Hypotheses
Ref Expression
hover.f 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
ivthdichlem.z (𝜑𝑍 ∈ ℝ)
ivthdichlem.i (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
Assertion
Ref Expression
ivthdichlem (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
Distinct variable groups:   𝐹,𝑎,𝑏,𝑓,𝑥   𝑍,𝑎,𝑏,𝑓,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏)

Proof of Theorem ivthdichlem
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 ivthdichlem.z . . . 4 (𝜑𝑍 ∈ ℝ)
2 peano2rem 8346 . . . 4 (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ)
31, 2syl 14 . . 3 (𝜑 → (𝑍 − 1) ∈ ℝ)
4 2re 9113 . . . . 5 2 ∈ ℝ
54a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ)
61, 5readdcld 8109 . . 3 (𝜑 → (𝑍 + 2) ∈ ℝ)
71ltm1d 9012 . . . 4 (𝜑 → (𝑍 − 1) < 𝑍)
8 2rp 9787 . . . . . 6 2 ∈ ℝ+
98a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
101, 9ltaddrpd 9859 . . . 4 (𝜑𝑍 < (𝑍 + 2))
113, 1, 6, 7, 10lttrd 8205 . . 3 (𝜑 → (𝑍 − 1) < (𝑍 + 2))
12 hover.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
1312hovercncf 15162 . . . 4 𝐹 ∈ (ℝ–cn→ℝ)
1413a1i 9 . . 3 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
1512hovera 15163 . . . . 5 (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍)
161, 15syl 14 . . . 4 (𝜑 → (𝐹‘(𝑍 − 1)) < 𝑍)
1712hoverb 15164 . . . . 5 (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2)))
181, 17syl 14 . . . 4 (𝜑𝑍 < (𝐹‘(𝑍 + 2)))
1916, 18jca 306 . . 3 (𝜑 → ((𝐹‘(𝑍 − 1)) < 𝑍𝑍 < (𝐹‘(𝑍 + 2))))
20 ivthdichlem.i . . 3 (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
213, 6, 1, 11, 14, 19, 20ivthreinc 15161 . 2 (𝜑 → ∃𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2))(𝐹𝑐) = 𝑍)
22 0red 8080 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 0 ∈ ℝ)
23 1red 8094 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 1 ∈ ℝ)
24 elioore 10041 . . . . . 6 (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) → 𝑐 ∈ ℝ)
2524ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 𝑐 ∈ ℝ)
26 0lt1 8206 . . . . . 6 0 < 1
27 axltwlin 8147 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 1 → (0 < 𝑐𝑐 < 1)))
2826, 27mpi 15 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 𝑐𝑐 < 1))
2922, 23, 25, 28syl3anc 1250 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (0 < 𝑐𝑐 < 1))
3029orcomd 731 . . 3 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑐 < 1 ∨ 0 < 𝑐))
31 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹𝑐) = 𝑍)
3212hoverlt1 15165 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 < 1) → (𝐹𝑐) ≤ 0)
3325, 32sylan 283 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹𝑐) ≤ 0)
3431, 33eqbrtrrd 4071 . . . . 5 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → 𝑍 ≤ 0)
3534ex 115 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑐 < 1 → 𝑍 ≤ 0))
3612hovergt0 15166 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 0 < 𝑐) → 0 ≤ (𝐹𝑐))
3725, 36sylan 283 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ (𝐹𝑐))
38 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → (𝐹𝑐) = 𝑍)
3937, 38breqtrd 4073 . . . . 5 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ 𝑍)
4039ex 115 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (0 < 𝑐 → 0 ≤ 𝑍))
4135, 40orim12d 788 . . 3 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → ((𝑐 < 1 ∨ 0 < 𝑐) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)))
4230, 41mpd 13 . 2 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
4321, 42rexlimddv 2629 1 (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981  wal 1371   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {cpr 3635   class class class wbr 4047  cmpt 4109  cfv 5276  (class class class)co 5951  supcsup 7091  infcinf 7092  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   < clt 8114  cle 8115  cmin 8250  2c2 9094  +crp 9782  (,)cioo 10017  cnccncf 15086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-addf 8054
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-cn 14704  df-cnp 14705  df-tx 14769  df-cncf 15087
This theorem is referenced by:  ivthdich  15169
  Copyright terms: Public domain W3C validator