![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ivthdichlem | GIF version |
Description: Lemma for ivthdich 14832. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.) |
Ref | Expression |
---|---|
hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
ivthdichlem.z | ⊢ (𝜑 → 𝑍 ∈ ℝ) |
ivthdichlem.i | ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) |
Ref | Expression |
---|---|
ivthdichlem | ⊢ (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivthdichlem.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ ℝ) | |
2 | peano2rem 8288 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝑍 − 1) ∈ ℝ) |
4 | 2re 9054 | . . . . 5 ⊢ 2 ∈ ℝ | |
5 | 4 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 ∈ ℝ) |
6 | 1, 5 | readdcld 8051 | . . 3 ⊢ (𝜑 → (𝑍 + 2) ∈ ℝ) |
7 | 1 | ltm1d 8953 | . . . 4 ⊢ (𝜑 → (𝑍 − 1) < 𝑍) |
8 | 2rp 9727 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
9 | 8 | a1i 9 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ+) |
10 | 1, 9 | ltaddrpd 9799 | . . . 4 ⊢ (𝜑 → 𝑍 < (𝑍 + 2)) |
11 | 3, 1, 6, 7, 10 | lttrd 8147 | . . 3 ⊢ (𝜑 → (𝑍 − 1) < (𝑍 + 2)) |
12 | hover.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
13 | 12 | hovercncf 14825 | . . . 4 ⊢ 𝐹 ∈ (ℝ–cn→ℝ) |
14 | 13 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) |
15 | 12 | hovera 14826 | . . . . 5 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) |
16 | 1, 15 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑍 − 1)) < 𝑍) |
17 | 12 | hoverb 14827 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
18 | 1, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑍 < (𝐹‘(𝑍 + 2))) |
19 | 16, 18 | jca 306 | . . 3 ⊢ (𝜑 → ((𝐹‘(𝑍 − 1)) < 𝑍 ∧ 𝑍 < (𝐹‘(𝑍 + 2)))) |
20 | ivthdichlem.i | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) | |
21 | 3, 6, 1, 11, 14, 19, 20 | ivthreinc 14824 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2))(𝐹‘𝑐) = 𝑍) |
22 | 0red 8022 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → 0 ∈ ℝ) | |
23 | 1red 8036 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → 1 ∈ ℝ) | |
24 | elioore 9981 | . . . . . 6 ⊢ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) → 𝑐 ∈ ℝ) | |
25 | 24 | ad2antrl 490 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → 𝑐 ∈ ℝ) |
26 | 0lt1 8148 | . . . . . 6 ⊢ 0 < 1 | |
27 | axltwlin 8089 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 1 → (0 < 𝑐 ∨ 𝑐 < 1))) | |
28 | 26, 27 | mpi 15 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 𝑐 ∨ 𝑐 < 1)) |
29 | 22, 23, 25, 28 | syl3anc 1249 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (0 < 𝑐 ∨ 𝑐 < 1)) |
30 | 29 | orcomd 730 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (𝑐 < 1 ∨ 0 < 𝑐)) |
31 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹‘𝑐) = 𝑍) | |
32 | 12 | hoverlt1 14828 | . . . . . . 7 ⊢ ((𝑐 ∈ ℝ ∧ 𝑐 < 1) → (𝐹‘𝑐) ≤ 0) |
33 | 25, 32 | sylan 283 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹‘𝑐) ≤ 0) |
34 | 31, 33 | eqbrtrrd 4054 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 𝑐 < 1) → 𝑍 ≤ 0) |
35 | 34 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (𝑐 < 1 → 𝑍 ≤ 0)) |
36 | 12 | hovergt0 14829 | . . . . . . 7 ⊢ ((𝑐 ∈ ℝ ∧ 0 < 𝑐) → 0 ≤ (𝐹‘𝑐)) |
37 | 25, 36 | sylan 283 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ (𝐹‘𝑐)) |
38 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 0 < 𝑐) → (𝐹‘𝑐) = 𝑍) | |
39 | 37, 38 | breqtrd 4056 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ 𝑍) |
40 | 39 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (0 < 𝑐 → 0 ≤ 𝑍)) |
41 | 35, 40 | orim12d 787 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → ((𝑐 < 1 ∨ 0 < 𝑐) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))) |
42 | 30, 41 | mpd 13 | . 2 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) |
43 | 21, 42 | rexlimddv 2616 | 1 ⊢ (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 {cpr 3620 class class class wbr 4030 ↦ cmpt 4091 ‘cfv 5255 (class class class)co 5919 supcsup 7043 infcinf 7044 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 ≤ cle 8057 − cmin 8192 2c2 9035 ℝ+crp 9722 (,)cioo 9957 –cn→ccncf 14749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-addf 7996 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 |
This theorem is referenced by: ivthdich 14832 |
Copyright terms: Public domain | W3C validator |