| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ivthdichlem | GIF version | ||
| Description: Lemma for ivthdich 14889. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.) | 
| Ref | Expression | 
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | 
| ivthdichlem.z | ⊢ (𝜑 → 𝑍 ∈ ℝ) | 
| ivthdichlem.i | ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) | 
| Ref | Expression | 
|---|---|
| ivthdichlem | ⊢ (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ivthdichlem.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ ℝ) | |
| 2 | peano2rem 8293 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝑍 − 1) ∈ ℝ) | 
| 4 | 2re 9060 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 ∈ ℝ) | 
| 6 | 1, 5 | readdcld 8056 | . . 3 ⊢ (𝜑 → (𝑍 + 2) ∈ ℝ) | 
| 7 | 1 | ltm1d 8959 | . . . 4 ⊢ (𝜑 → (𝑍 − 1) < 𝑍) | 
| 8 | 2rp 9733 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ+) | 
| 10 | 1, 9 | ltaddrpd 9805 | . . . 4 ⊢ (𝜑 → 𝑍 < (𝑍 + 2)) | 
| 11 | 3, 1, 6, 7, 10 | lttrd 8152 | . . 3 ⊢ (𝜑 → (𝑍 − 1) < (𝑍 + 2)) | 
| 12 | hover.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 13 | 12 | hovercncf 14882 | . . . 4 ⊢ 𝐹 ∈ (ℝ–cn→ℝ) | 
| 14 | 13 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) | 
| 15 | 12 | hovera 14883 | . . . . 5 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) | 
| 16 | 1, 15 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑍 − 1)) < 𝑍) | 
| 17 | 12 | hoverb 14884 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) | 
| 18 | 1, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑍 < (𝐹‘(𝑍 + 2))) | 
| 19 | 16, 18 | jca 306 | . . 3 ⊢ (𝜑 → ((𝐹‘(𝑍 − 1)) < 𝑍 ∧ 𝑍 < (𝐹‘(𝑍 + 2)))) | 
| 20 | ivthdichlem.i | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) | |
| 21 | 3, 6, 1, 11, 14, 19, 20 | ivthreinc 14881 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2))(𝐹‘𝑐) = 𝑍) | 
| 22 | 0red 8027 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → 0 ∈ ℝ) | |
| 23 | 1red 8041 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → 1 ∈ ℝ) | |
| 24 | elioore 9987 | . . . . . 6 ⊢ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) → 𝑐 ∈ ℝ) | |
| 25 | 24 | ad2antrl 490 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → 𝑐 ∈ ℝ) | 
| 26 | 0lt1 8153 | . . . . . 6 ⊢ 0 < 1 | |
| 27 | axltwlin 8094 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 1 → (0 < 𝑐 ∨ 𝑐 < 1))) | |
| 28 | 26, 27 | mpi 15 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 𝑐 ∨ 𝑐 < 1)) | 
| 29 | 22, 23, 25, 28 | syl3anc 1249 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (0 < 𝑐 ∨ 𝑐 < 1)) | 
| 30 | 29 | orcomd 730 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (𝑐 < 1 ∨ 0 < 𝑐)) | 
| 31 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹‘𝑐) = 𝑍) | |
| 32 | 12 | hoverlt1 14885 | . . . . . . 7 ⊢ ((𝑐 ∈ ℝ ∧ 𝑐 < 1) → (𝐹‘𝑐) ≤ 0) | 
| 33 | 25, 32 | sylan 283 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹‘𝑐) ≤ 0) | 
| 34 | 31, 33 | eqbrtrrd 4057 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 𝑐 < 1) → 𝑍 ≤ 0) | 
| 35 | 34 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (𝑐 < 1 → 𝑍 ≤ 0)) | 
| 36 | 12 | hovergt0 14886 | . . . . . . 7 ⊢ ((𝑐 ∈ ℝ ∧ 0 < 𝑐) → 0 ≤ (𝐹‘𝑐)) | 
| 37 | 25, 36 | sylan 283 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ (𝐹‘𝑐)) | 
| 38 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 0 < 𝑐) → (𝐹‘𝑐) = 𝑍) | |
| 39 | 37, 38 | breqtrd 4059 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ 𝑍) | 
| 40 | 39 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (0 < 𝑐 → 0 ≤ 𝑍)) | 
| 41 | 35, 40 | orim12d 787 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → ((𝑐 < 1 ∨ 0 < 𝑐) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))) | 
| 42 | 30, 41 | mpd 13 | . 2 ⊢ ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹‘𝑐) = 𝑍)) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) | 
| 43 | 21, 42 | rexlimddv 2619 | 1 ⊢ (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {cpr 3623 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 supcsup 7048 infcinf 7049 ℝcr 7878 0cc0 7879 1c1 7880 + caddc 7882 < clt 8061 ≤ cle 8062 − cmin 8197 2c2 9041 ℝ+crp 9728 (,)cioo 9963 –cn→ccncf 14806 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 | 
| This theorem is referenced by: ivthdich 14889 | 
| Copyright terms: Public domain | W3C validator |