ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdichlem GIF version

Theorem ivthdichlem 14887
Description: Lemma for ivthdich 14889. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
Hypotheses
Ref Expression
hover.f 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
ivthdichlem.z (𝜑𝑍 ∈ ℝ)
ivthdichlem.i (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
Assertion
Ref Expression
ivthdichlem (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
Distinct variable groups:   𝐹,𝑎,𝑏,𝑓,𝑥   𝑍,𝑎,𝑏,𝑓,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏)

Proof of Theorem ivthdichlem
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 ivthdichlem.z . . . 4 (𝜑𝑍 ∈ ℝ)
2 peano2rem 8293 . . . 4 (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ)
31, 2syl 14 . . 3 (𝜑 → (𝑍 − 1) ∈ ℝ)
4 2re 9060 . . . . 5 2 ∈ ℝ
54a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ)
61, 5readdcld 8056 . . 3 (𝜑 → (𝑍 + 2) ∈ ℝ)
71ltm1d 8959 . . . 4 (𝜑 → (𝑍 − 1) < 𝑍)
8 2rp 9733 . . . . . 6 2 ∈ ℝ+
98a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
101, 9ltaddrpd 9805 . . . 4 (𝜑𝑍 < (𝑍 + 2))
113, 1, 6, 7, 10lttrd 8152 . . 3 (𝜑 → (𝑍 − 1) < (𝑍 + 2))
12 hover.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
1312hovercncf 14882 . . . 4 𝐹 ∈ (ℝ–cn→ℝ)
1413a1i 9 . . 3 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
1512hovera 14883 . . . . 5 (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍)
161, 15syl 14 . . . 4 (𝜑 → (𝐹‘(𝑍 − 1)) < 𝑍)
1712hoverb 14884 . . . . 5 (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2)))
181, 17syl 14 . . . 4 (𝜑𝑍 < (𝐹‘(𝑍 + 2)))
1916, 18jca 306 . . 3 (𝜑 → ((𝐹‘(𝑍 − 1)) < 𝑍𝑍 < (𝐹‘(𝑍 + 2))))
20 ivthdichlem.i . . 3 (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
213, 6, 1, 11, 14, 19, 20ivthreinc 14881 . 2 (𝜑 → ∃𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2))(𝐹𝑐) = 𝑍)
22 0red 8027 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 0 ∈ ℝ)
23 1red 8041 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 1 ∈ ℝ)
24 elioore 9987 . . . . . 6 (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) → 𝑐 ∈ ℝ)
2524ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 𝑐 ∈ ℝ)
26 0lt1 8153 . . . . . 6 0 < 1
27 axltwlin 8094 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 1 → (0 < 𝑐𝑐 < 1)))
2826, 27mpi 15 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 𝑐𝑐 < 1))
2922, 23, 25, 28syl3anc 1249 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (0 < 𝑐𝑐 < 1))
3029orcomd 730 . . 3 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑐 < 1 ∨ 0 < 𝑐))
31 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹𝑐) = 𝑍)
3212hoverlt1 14885 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 < 1) → (𝐹𝑐) ≤ 0)
3325, 32sylan 283 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹𝑐) ≤ 0)
3431, 33eqbrtrrd 4057 . . . . 5 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → 𝑍 ≤ 0)
3534ex 115 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑐 < 1 → 𝑍 ≤ 0))
3612hovergt0 14886 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 0 < 𝑐) → 0 ≤ (𝐹𝑐))
3725, 36sylan 283 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ (𝐹𝑐))
38 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → (𝐹𝑐) = 𝑍)
3937, 38breqtrd 4059 . . . . 5 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ 𝑍)
4039ex 115 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (0 < 𝑐 → 0 ≤ 𝑍))
4135, 40orim12d 787 . . 3 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → ((𝑐 < 1 ∨ 0 < 𝑐) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)))
4230, 41mpd 13 . 2 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
4321, 42rexlimddv 2619 1 (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {cpr 3623   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  supcsup 7048  infcinf 7049  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cmin 8197  2c2 9041  +crp 9728  (,)cioo 9963  cnccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807
This theorem is referenced by:  ivthdich  14889
  Copyright terms: Public domain W3C validator