ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdichlem GIF version

Theorem ivthdichlem 14995
Description: Lemma for ivthdich 14997. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
Hypotheses
Ref Expression
hover.f 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
ivthdichlem.z (𝜑𝑍 ∈ ℝ)
ivthdichlem.i (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
Assertion
Ref Expression
ivthdichlem (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
Distinct variable groups:   𝐹,𝑎,𝑏,𝑓,𝑥   𝑍,𝑎,𝑏,𝑓,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏)

Proof of Theorem ivthdichlem
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 ivthdichlem.z . . . 4 (𝜑𝑍 ∈ ℝ)
2 peano2rem 8312 . . . 4 (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ)
31, 2syl 14 . . 3 (𝜑 → (𝑍 − 1) ∈ ℝ)
4 2re 9079 . . . . 5 2 ∈ ℝ
54a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ)
61, 5readdcld 8075 . . 3 (𝜑 → (𝑍 + 2) ∈ ℝ)
71ltm1d 8978 . . . 4 (𝜑 → (𝑍 − 1) < 𝑍)
8 2rp 9752 . . . . . 6 2 ∈ ℝ+
98a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
101, 9ltaddrpd 9824 . . . 4 (𝜑𝑍 < (𝑍 + 2))
113, 1, 6, 7, 10lttrd 8171 . . 3 (𝜑 → (𝑍 − 1) < (𝑍 + 2))
12 hover.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
1312hovercncf 14990 . . . 4 𝐹 ∈ (ℝ–cn→ℝ)
1413a1i 9 . . 3 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
1512hovera 14991 . . . . 5 (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍)
161, 15syl 14 . . . 4 (𝜑 → (𝐹‘(𝑍 − 1)) < 𝑍)
1712hoverb 14992 . . . . 5 (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2)))
181, 17syl 14 . . . 4 (𝜑𝑍 < (𝐹‘(𝑍 + 2)))
1916, 18jca 306 . . 3 (𝜑 → ((𝐹‘(𝑍 − 1)) < 𝑍𝑍 < (𝐹‘(𝑍 + 2))))
20 ivthdichlem.i . . 3 (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓𝑎) < 0 ∧ 0 < (𝑓𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥𝑥 < 𝑏 ∧ (𝑓𝑥) = 0))))
213, 6, 1, 11, 14, 19, 20ivthreinc 14989 . 2 (𝜑 → ∃𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2))(𝐹𝑐) = 𝑍)
22 0red 8046 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 0 ∈ ℝ)
23 1red 8060 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 1 ∈ ℝ)
24 elioore 10006 . . . . . 6 (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) → 𝑐 ∈ ℝ)
2524ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → 𝑐 ∈ ℝ)
26 0lt1 8172 . . . . . 6 0 < 1
27 axltwlin 8113 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 1 → (0 < 𝑐𝑐 < 1)))
2826, 27mpi 15 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (0 < 𝑐𝑐 < 1))
2922, 23, 25, 28syl3anc 1249 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (0 < 𝑐𝑐 < 1))
3029orcomd 730 . . 3 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑐 < 1 ∨ 0 < 𝑐))
31 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹𝑐) = 𝑍)
3212hoverlt1 14993 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 < 1) → (𝐹𝑐) ≤ 0)
3325, 32sylan 283 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → (𝐹𝑐) ≤ 0)
3431, 33eqbrtrrd 4058 . . . . 5 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 𝑐 < 1) → 𝑍 ≤ 0)
3534ex 115 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑐 < 1 → 𝑍 ≤ 0))
3612hovergt0 14994 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 0 < 𝑐) → 0 ≤ (𝐹𝑐))
3725, 36sylan 283 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ (𝐹𝑐))
38 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → (𝐹𝑐) = 𝑍)
3937, 38breqtrd 4060 . . . . 5 (((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) ∧ 0 < 𝑐) → 0 ≤ 𝑍)
4039ex 115 . . . 4 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (0 < 𝑐 → 0 ≤ 𝑍))
4135, 40orim12d 787 . . 3 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → ((𝑐 < 1 ∨ 0 < 𝑐) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)))
4230, 41mpd 13 . 2 ((𝜑 ∧ (𝑐 ∈ ((𝑍 − 1)(,)(𝑍 + 2)) ∧ (𝐹𝑐) = 𝑍)) → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
4321, 42rexlimddv 2619 1 (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {cpr 3624   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  supcsup 7057  infcinf 7058  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   < clt 8080  cle 8081  cmin 8216  2c2 9060  +crp 9747  (,)cioo 9982  cnccncf 14914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915
This theorem is referenced by:  ivthdich  14997
  Copyright terms: Public domain W3C validator