| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthdich | GIF version | ||
| Description: The intermediate value
theorem implies real number dichotomy. Because
real number dichotomy (also known as analytic LLPO) is a constructive
taboo, this means we will be unable to prove the intermediate value
theorem as stated here (although versions with additional conditions,
such as ivthinc 14987 for strictly monotonic functions, can be
proved).
The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number 𝑧. We want to show that 𝑧 ≤ 0 ∨ 0 ≤ 𝑧. Because of hovercncf 14990, hovera 14991, and hoverb 14992, we are able to apply the intermediate value theorem to get a value 𝑐 such that the hover function at 𝑐 equals 𝑧. By axltwlin 8113, 𝑐 < 1 or 0 < 𝑐, and that leads to 𝑧 ≤ 0 by hoverlt1 14993 or 0 ≤ 𝑧 by hovergt0 14994. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.) |
| Ref | Expression |
|---|---|
| ivthdich | ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → (𝑎 < 𝑥 ↔ 𝑎 < 𝑞)) | |
| 2 | breq1 4037 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → (𝑥 < 𝑏 ↔ 𝑞 < 𝑏)) | |
| 3 | fveqeq2 5570 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → ((𝑓‘𝑥) = 0 ↔ (𝑓‘𝑞) = 0)) | |
| 4 | 1, 2, 3 | 3anbi123d 1323 | . . . . . . . . 9 ⊢ (𝑥 = 𝑞 → ((𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) |
| 5 | 4 | cbvrexv 2730 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)) |
| 6 | 5 | imbi2i 226 | . . . . . . 7 ⊢ (((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) |
| 7 | 6 | 2ralbii 2505 | . . . . . 6 ⊢ (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) |
| 8 | 7 | imbi2i 226 | . . . . 5 ⊢ ((𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ (𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)))) |
| 9 | 8 | albii 1484 | . . . 4 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)))) |
| 10 | preq1 3700 | . . . . . . . . 9 ⊢ (𝑡 = 𝑥 → {𝑡, 0} = {𝑥, 0}) | |
| 11 | 10 | infeq1d 7087 | . . . . . . . 8 ⊢ (𝑡 = 𝑥 → inf({𝑡, 0}, ℝ, < ) = inf({𝑥, 0}, ℝ, < )) |
| 12 | oveq1 5932 | . . . . . . . 8 ⊢ (𝑡 = 𝑥 → (𝑡 − 1) = (𝑥 − 1)) | |
| 13 | 11, 12 | preq12d 3708 | . . . . . . 7 ⊢ (𝑡 = 𝑥 → {inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)} = {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}) |
| 14 | 13 | supeq1d 7062 | . . . . . 6 ⊢ (𝑡 = 𝑥 → sup({inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)}, ℝ, < ) = sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| 15 | 14 | cbvmptv 4130 | . . . . 5 ⊢ (𝑡 ∈ ℝ ↦ sup({inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| 16 | simpr 110 | . . . . 5 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
| 17 | 9 | biimpri 133 | . . . . . 6 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) |
| 18 | 17 | adantr 276 | . . . . 5 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) |
| 19 | 15, 16, 18 | ivthdichlem 14995 | . . . 4 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
| 20 | 9, 19 | sylanb 284 | . . 3 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
| 21 | 20 | ralrimiva 2570 | . 2 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
| 22 | dich0 14996 | . 2 ⊢ (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | |
| 23 | 21, 22 | sylib 122 | 1 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {cpr 3624 class class class wbr 4034 ↦ cmpt 4095 ‘cfv 5259 (class class class)co 5925 supcsup 7057 infcinf 7058 ℝcr 7897 0cc0 7898 1c1 7899 < clt 8080 ≤ cle 8081 − cmin 8216 –cn→ccncf 14914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 ax-addf 8020 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-xneg 9866 df-xadd 9867 df-ioo 9986 df-seqfrec 10559 df-exp 10650 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-rest 12945 df-topgen 12964 df-psmet 14177 df-xmet 14178 df-met 14179 df-bl 14180 df-mopn 14181 df-top 14342 df-topon 14355 df-bases 14387 df-cn 14532 df-cnp 14533 df-tx 14597 df-cncf 14915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |