| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthdich | GIF version | ||
| Description: The intermediate value
theorem implies real number dichotomy. Because
real number dichotomy (also known as analytic LLPO) is a constructive
taboo, this means we will be unable to prove the intermediate value
theorem as stated here (although versions with additional conditions,
such as ivthinc 15325 for strictly monotonic functions, can be
proved).
The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number 𝑧. We want to show that 𝑧 ≤ 0 ∨ 0 ≤ 𝑧. Because of hovercncf 15328, hovera 15329, and hoverb 15330, we are able to apply the intermediate value theorem to get a value 𝑐 such that the hover function at 𝑐 equals 𝑧. By axltwlin 8222, 𝑐 < 1 or 0 < 𝑐, and that leads to 𝑧 ≤ 0 by hoverlt1 15331 or 0 ≤ 𝑧 by hovergt0 15332. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.) |
| Ref | Expression |
|---|---|
| ivthdich | ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → (𝑎 < 𝑥 ↔ 𝑎 < 𝑞)) | |
| 2 | breq1 4086 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → (𝑥 < 𝑏 ↔ 𝑞 < 𝑏)) | |
| 3 | fveqeq2 5638 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → ((𝑓‘𝑥) = 0 ↔ (𝑓‘𝑞) = 0)) | |
| 4 | 1, 2, 3 | 3anbi123d 1346 | . . . . . . . . 9 ⊢ (𝑥 = 𝑞 → ((𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) |
| 5 | 4 | cbvrexv 2766 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)) |
| 6 | 5 | imbi2i 226 | . . . . . . 7 ⊢ (((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) |
| 7 | 6 | 2ralbii 2538 | . . . . . 6 ⊢ (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) |
| 8 | 7 | imbi2i 226 | . . . . 5 ⊢ ((𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ (𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)))) |
| 9 | 8 | albii 1516 | . . . 4 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)))) |
| 10 | preq1 3743 | . . . . . . . . 9 ⊢ (𝑡 = 𝑥 → {𝑡, 0} = {𝑥, 0}) | |
| 11 | 10 | infeq1d 7187 | . . . . . . . 8 ⊢ (𝑡 = 𝑥 → inf({𝑡, 0}, ℝ, < ) = inf({𝑥, 0}, ℝ, < )) |
| 12 | oveq1 6014 | . . . . . . . 8 ⊢ (𝑡 = 𝑥 → (𝑡 − 1) = (𝑥 − 1)) | |
| 13 | 11, 12 | preq12d 3751 | . . . . . . 7 ⊢ (𝑡 = 𝑥 → {inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)} = {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}) |
| 14 | 13 | supeq1d 7162 | . . . . . 6 ⊢ (𝑡 = 𝑥 → sup({inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)}, ℝ, < ) = sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| 15 | 14 | cbvmptv 4180 | . . . . 5 ⊢ (𝑡 ∈ ℝ ↦ sup({inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| 16 | simpr 110 | . . . . 5 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
| 17 | 9 | biimpri 133 | . . . . . 6 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) |
| 18 | 17 | adantr 276 | . . . . 5 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) |
| 19 | 15, 16, 18 | ivthdichlem 15333 | . . . 4 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
| 20 | 9, 19 | sylanb 284 | . . 3 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
| 21 | 20 | ralrimiva 2603 | . 2 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) |
| 22 | dich0 15334 | . 2 ⊢ (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | |
| 23 | 21, 22 | sylib 122 | 1 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {cpr 3667 class class class wbr 4083 ↦ cmpt 4145 ‘cfv 5318 (class class class)co 6007 supcsup 7157 infcinf 7158 ℝcr 8006 0cc0 8007 1c1 8008 < clt 8189 ≤ cle 8190 − cmin 8325 –cn→ccncf 15252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-addf 8129 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-ioo 10096 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |