| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ivthdich | GIF version | ||
| Description: The intermediate value
theorem implies real number dichotomy.  Because
       real number dichotomy (also known as analytic LLPO) is a constructive
       taboo, this means we will be unable to prove the intermediate value
       theorem as stated here (although versions with additional conditions,
       such as ivthinc 14879 for strictly monotonic functions, can be
proved).
 The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number 𝑧. We want to show that 𝑧 ≤ 0 ∨ 0 ≤ 𝑧. Because of hovercncf 14882, hovera 14883, and hoverb 14884, we are able to apply the intermediate value theorem to get a value 𝑐 such that the hover function at 𝑐 equals 𝑧. By axltwlin 8094, 𝑐 < 1 or 0 < 𝑐, and that leads to 𝑧 ≤ 0 by hoverlt1 14885 or 0 ≤ 𝑧 by hovergt0 14886. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)  | 
| Ref | Expression | 
|---|---|
| ivthdich | ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 4037 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → (𝑎 < 𝑥 ↔ 𝑎 < 𝑞)) | |
| 2 | breq1 4036 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → (𝑥 < 𝑏 ↔ 𝑞 < 𝑏)) | |
| 3 | fveqeq2 5567 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑞 → ((𝑓‘𝑥) = 0 ↔ (𝑓‘𝑞) = 0)) | |
| 4 | 1, 2, 3 | 3anbi123d 1323 | . . . . . . . . 9 ⊢ (𝑥 = 𝑞 → ((𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) | 
| 5 | 4 | cbvrexv 2730 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0) ↔ ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)) | 
| 6 | 5 | imbi2i 226 | . . . . . . 7 ⊢ (((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) | 
| 7 | 6 | 2ralbii 2505 | . . . . . 6 ⊢ (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)) ↔ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) | 
| 8 | 7 | imbi2i 226 | . . . . 5 ⊢ ((𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ (𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)))) | 
| 9 | 8 | albii 1484 | . . . 4 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ↔ ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0)))) | 
| 10 | preq1 3699 | . . . . . . . . 9 ⊢ (𝑡 = 𝑥 → {𝑡, 0} = {𝑥, 0}) | |
| 11 | 10 | infeq1d 7078 | . . . . . . . 8 ⊢ (𝑡 = 𝑥 → inf({𝑡, 0}, ℝ, < ) = inf({𝑥, 0}, ℝ, < )) | 
| 12 | oveq1 5929 | . . . . . . . 8 ⊢ (𝑡 = 𝑥 → (𝑡 − 1) = (𝑥 − 1)) | |
| 13 | 11, 12 | preq12d 3707 | . . . . . . 7 ⊢ (𝑡 = 𝑥 → {inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)} = {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}) | 
| 14 | 13 | supeq1d 7053 | . . . . . 6 ⊢ (𝑡 = 𝑥 → sup({inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)}, ℝ, < ) = sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | 
| 15 | 14 | cbvmptv 4129 | . . . . 5 ⊢ (𝑡 ∈ ℝ ↦ sup({inf({𝑡, 0}, ℝ, < ), (𝑡 − 1)}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | 
| 16 | simpr 110 | . . . . 5 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
| 17 | 9 | biimpri 133 | . . . . . 6 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) | 
| 18 | 17 | adantr 276 | . . . . 5 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) | 
| 19 | 15, 16, 18 | ivthdichlem 14887 | . . . 4 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑞 ∈ ℝ (𝑎 < 𝑞 ∧ 𝑞 < 𝑏 ∧ (𝑓‘𝑞) = 0))) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) | 
| 20 | 9, 19 | sylanb 284 | . . 3 ⊢ ((∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) ∧ 𝑧 ∈ ℝ) → (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) | 
| 21 | 20 | ralrimiva 2570 | . 2 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧)) | 
| 22 | dich0 14888 | . 2 ⊢ (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | |
| 23 | 21, 22 | sylib 122 | 1 ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {cpr 3623 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 supcsup 7048 infcinf 7049 ℝcr 7878 0cc0 7879 1c1 7880 < clt 8061 ≤ cle 8062 − cmin 8197 –cn→ccncf 14806 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |