Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fidcen GIF version

Theorem fidcen 16379
Description: Equinumerosity of finite sets is decidable. (Contributed by Jim Kingdon, 10-Feb-2026.)
Assertion
Ref Expression
fidcen ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → DECID 𝐴𝐵)

Proof of Theorem fidcen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6920 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
32adantr 276 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 6920 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑦 ∈ ω 𝐵𝑦)
54biimpi 120 . . . 4 (𝐵 ∈ Fin → ∃𝑦 ∈ ω 𝐵𝑦)
65ad2antlr 489 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → ∃𝑦 ∈ ω 𝐵𝑦)
7 simplrl 535 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → 𝑥 ∈ ω)
8 simprl 529 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → 𝑦 ∈ ω)
9 nndceq 6653 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦)
107, 8, 9syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → DECID 𝑥 = 𝑦)
11 exmiddc 841 . . . . . 6 (DECID 𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ ¬ 𝑥 = 𝑦))
1210, 11syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → (𝑥 = 𝑦 ∨ ¬ 𝑥 = 𝑦))
13 simplrr 536 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → 𝐴𝑥)
14 simplrr 536 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝑥 = 𝑦) → 𝐵𝑦)
15 simpr 110 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
1614, 15breqtrrd 4111 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝑥 = 𝑦) → 𝐵𝑥)
1716ensymd 6943 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝑥 = 𝑦) → 𝑥𝐵)
18 entr 6944 . . . . . . . 8 ((𝐴𝑥𝑥𝐵) → 𝐴𝐵)
1913, 17, 18syl2an2r 597 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝑥 = 𝑦) → 𝐴𝐵)
2019ex 115 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → (𝑥 = 𝑦𝐴𝐵))
2113ensymd 6943 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → 𝑥𝐴)
22 entr 6944 . . . . . . . . . . 11 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
2321, 22sylan 283 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝐴𝐵) → 𝑥𝐵)
24 simplrr 536 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝐴𝐵) → 𝐵𝑦)
25 entr 6944 . . . . . . . . . 10 ((𝑥𝐵𝐵𝑦) → 𝑥𝑦)
2623, 24, 25syl2anc 411 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝐴𝐵) → 𝑥𝑦)
27 simplrl 535 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝐴𝐵) → 𝑦 ∈ ω)
28 nneneq 7026 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦))
297, 27, 28syl2an2r 597 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝐴𝐵) → (𝑥𝑦𝑥 = 𝑦))
3026, 29mpbid 147 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) ∧ 𝐴𝐵) → 𝑥 = 𝑦)
3130ex 115 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → (𝐴𝐵𝑥 = 𝑦))
3231con3d 634 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → (¬ 𝑥 = 𝑦 → ¬ 𝐴𝐵))
3320, 32orim12d 791 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → ((𝑥 = 𝑦 ∨ ¬ 𝑥 = 𝑦) → (𝐴𝐵 ∨ ¬ 𝐴𝐵)))
3412, 33mpd 13 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
35 df-dc 840 . . . 4 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3634, 35sylibr 134 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ (𝑦 ∈ ω ∧ 𝐵𝑦)) → DECID 𝐴𝐵)
376, 36rexlimddv 2653 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → DECID 𝐴𝐵)
383, 37rexlimddv 2653 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  wcel 2200  wrex 2509   class class class wbr 4083  ωcom 4682  cen 6893  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator