![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > le0neg1 | GIF version |
Description: Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
le0neg1 | ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7987 | . . 3 ⊢ 0 ∈ ℝ | |
2 | leneg 8452 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ -0 ≤ -𝐴)) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ -0 ≤ -𝐴)) |
4 | neg0 8233 | . . 3 ⊢ -0 = 0 | |
5 | 4 | breq1i 4025 | . 2 ⊢ (-0 ≤ -𝐴 ↔ 0 ≤ -𝐴) |
6 | 3, 5 | bitrdi 196 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2160 class class class wbr 4018 ℝcr 7840 0cc0 7841 ≤ cle 8023 -cneg 8159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 |
This theorem is referenced by: le0neg1d 8504 zzlesq 10720 absnid 11114 |
Copyright terms: Public domain | W3C validator |