ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleltp1 GIF version

Theorem zleltp1 8731
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
zleltp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))

Proof of Theorem zleltp1
StepHypRef Expression
1 zre 8680 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 8680 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 1re 7424 . . . 4 1 ∈ ℝ
4 leadd1 7845 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
53, 4mp3an3 1260 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
61, 2, 5syl2an 283 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
7 peano2z 8712 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
8 zltp1le 8730 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8sylan2 280 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
106, 9bitr4d 189 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1436   class class class wbr 3820  (class class class)co 5607  cr 7286  1c1 7288   + caddc 7290   < clt 7459  cle 7460  cz 8676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3931  ax-pow 3983  ax-pr 4009  ax-un 4233  ax-setind 4325  ax-cnex 7373  ax-resscn 7374  ax-1cn 7375  ax-1re 7376  ax-icn 7377  ax-addcl 7378  ax-addrcl 7379  ax-mulcl 7380  ax-addcom 7382  ax-addass 7384  ax-distr 7386  ax-i2m1 7387  ax-0lt1 7388  ax-0id 7390  ax-rnegex 7391  ax-cnre 7393  ax-pre-ltirr 7394  ax-pre-ltwlin 7395  ax-pre-lttrn 7396  ax-pre-ltadd 7398
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4093  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-dm 4420  df-iota 4943  df-fun 4980  df-fv 4986  df-riota 5563  df-ov 5610  df-oprab 5611  df-mpt2 5612  df-pnf 7461  df-mnf 7462  df-xr 7463  df-ltxr 7464  df-le 7465  df-sub 7592  df-neg 7593  df-inn 8351  df-n0 8600  df-z 8677
This theorem is referenced by:  zltlem1  8733  nnleltp1  8735  nn0leltp1  8739  nn0lt10b  8753  suprzclex  8770  le9lt10  8828  fzdifsuc  9418  exbtwnz  9583  flqge  9610  btwnzge0  9628  flhalf  9630  frec2uzltd  9731  iseqf1olemqsumkj  9824  ltoddhalfle  10760  zssinfcl  10811  prmind2  10969
  Copyright terms: Public domain W3C validator