ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleltp1 GIF version

Theorem zleltp1 9343
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
zleltp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))

Proof of Theorem zleltp1
StepHypRef Expression
1 zre 9292 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 9292 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 1re 7991 . . . 4 1 ∈ ℝ
4 leadd1 8422 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
53, 4mp3an3 1337 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
61, 2, 5syl2an 289 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
7 peano2z 9324 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
8 zltp1le 9342 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
106, 9bitr4d 191 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160   class class class wbr 4021  (class class class)co 5900  cr 7845  1c1 7847   + caddc 7849   < clt 8027  cle 8028  cz 9288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-n0 9212  df-z 9289
This theorem is referenced by:  zltlem1  9345  nnleltp1  9347  nn0leltp1  9351  nn0lt10b  9368  suprzclex  9386  le9lt10  9445  fzdifsuc  10117  exbtwnz  10287  flqge  10319  btwnzge0  10337  flhalf  10339  frec2uzltd  10440  seq3f1olemqsumkj  10537  nn0ltexp2  10730  cvgratz  11581  ltoddhalfle  11939  zssinfcl  11990  prmind2  12163  prm23lt5  12306
  Copyright terms: Public domain W3C validator