ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imneg GIF version

Theorem imneg 10787
Description: The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imneg (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))

Proof of Theorem imneg
StepHypRef Expression
1 recl 10764 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 7908 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 7829 . . . . . 6 i ∈ ℂ
4 imcl 10765 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 7908 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 7861 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 411 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negdid 8203 . . . 4 (𝐴 ∈ ℂ → -((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
9 replim 10770 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
109negeqd 8074 . . . 4 (𝐴 ∈ ℂ → -𝐴 = -((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
11 mulneg2 8275 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
123, 5, 11sylancr 411 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1312oveq2d 5842 . . . 4 (𝐴 ∈ ℂ → (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
148, 10, 133eqtr4d 2200 . . 3 (𝐴 ∈ ℂ → -𝐴 = (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
1514fveq2d 5474 . 2 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = (ℑ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))))
161renegcld 8259 . . 3 (𝐴 ∈ ℂ → -(ℜ‘𝐴) ∈ ℝ)
174renegcld 8259 . . 3 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
18 crim 10769 . . 3 ((-(ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℑ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℑ‘𝐴))
1916, 17, 18syl2anc 409 . 2 (𝐴 ∈ ℂ → (ℑ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℑ‘𝐴))
2015, 19eqtrd 2190 1 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  cfv 5172  (class class class)co 5826  cc 7732  cr 7733  ici 7736   + caddc 7737   · cmul 7739  -cneg 8051  cre 10751  cim 10752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-2 8897  df-cj 10753  df-re 10754  df-im 10755
This theorem is referenced by:  imsub  10789  cjneg  10801  imnegi  10836  imnegd  10866
  Copyright terms: Public domain W3C validator