ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjneg GIF version

Theorem cjneg 10854
Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjneg (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))

Proof of Theorem cjneg
StepHypRef Expression
1 recl 10817 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 7948 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 7869 . . . . 5 i ∈ ℂ
4 imcl 10818 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 7948 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 7901 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 412 . . . 4 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7neg2subd 8247 . . 3 (𝐴 ∈ ℂ → (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴)))
9 reneg 10832 . . . 4 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
10 imneg 10840 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
1110oveq2d 5869 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = (i · -(ℑ‘𝐴)))
12 mulneg2 8315 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
133, 5, 12sylancr 412 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1411, 13eqtrd 2203 . . . 4 (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = -(i · (ℑ‘𝐴)))
159, 14oveq12d 5871 . . 3 (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))))
162, 7negsubdi2d 8246 . . 3 (𝐴 ∈ ℂ → -((ℜ‘𝐴) − (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴)))
178, 15, 163eqtr4d 2213 . 2 (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
18 negcl 8119 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
19 remim 10824 . . 3 (-𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))))
2018, 19syl 14 . 2 (𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))))
21 remim 10824 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
2221negeqd 8114 . 2 (𝐴 ∈ ℂ → -(∗‘𝐴) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
2317, 20, 223eqtr4d 2213 1 (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  cfv 5198  (class class class)co 5853  cc 7772  ici 7776   · cmul 7779  cmin 8090  -cneg 8091  ccj 10803  cre 10804  cim 10805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-cj 10806  df-re 10807  df-im 10808
This theorem is referenced by:  cjsub  10856  cjnegi  10890  cjnegd  10920  absneg  11014
  Copyright terms: Public domain W3C validator