| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cjneg | GIF version | ||
| Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| cjneg | ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl 11279 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 2 | 1 | recnd 8136 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 3 | ax-icn 8055 | . . . . 5 ⊢ i ∈ ℂ | |
| 4 | imcl 11280 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 5 | 4 | recnd 8136 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
| 6 | mulcl 8087 | . . . . 5 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
| 7 | 3, 5, 6 | sylancr 414 | . . . 4 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
| 8 | 2, 7 | neg2subd 8435 | . . 3 ⊢ (𝐴 ∈ ℂ → (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴))) |
| 9 | reneg 11294 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | |
| 10 | imneg 11302 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | |
| 11 | 10 | oveq2d 5983 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = (i · -(ℑ‘𝐴))) |
| 12 | mulneg2 8503 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
| 13 | 3, 5, 12 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
| 14 | 11, 13 | eqtrd 2240 | . . . 4 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = -(i · (ℑ‘𝐴))) |
| 15 | 9, 14 | oveq12d 5985 | . . 3 ⊢ (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴)))) |
| 16 | 2, 7 | negsubdi2d 8434 | . . 3 ⊢ (𝐴 ∈ ℂ → -((ℜ‘𝐴) − (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴))) |
| 17 | 8, 15, 16 | 3eqtr4d 2250 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
| 18 | negcl 8307 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 19 | remim 11286 | . . 3 ⊢ (-𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴)))) | |
| 20 | 18, 19 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴)))) |
| 21 | remim 11286 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
| 22 | 21 | negeqd 8302 | . 2 ⊢ (𝐴 ∈ ℂ → -(∗‘𝐴) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
| 23 | 17, 20, 22 | 3eqtr4d 2250 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 ici 7962 · cmul 7965 − cmin 8278 -cneg 8279 ∗ccj 11265 ℜcre 11266 ℑcim 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 df-cj 11268 df-re 11269 df-im 11270 |
| This theorem is referenced by: cjsub 11318 cjnegi 11352 cjnegd 11382 absneg 11476 |
| Copyright terms: Public domain | W3C validator |