| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cjcj | GIF version | ||
| Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| cjcj | ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl 11130 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 2 | recj 11149 | . . . . 5 ⊢ ((∗‘𝐴) ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴))) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴))) |
| 4 | recj 11149 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | |
| 5 | 3, 4 | eqtrd 2237 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘𝐴)) |
| 6 | imcj 11157 | . . . . . 6 ⊢ ((∗‘𝐴) ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴))) | |
| 7 | 1, 6 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴))) |
| 8 | imcj 11157 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | |
| 9 | 8 | negeqd 8266 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = --(ℑ‘𝐴)) |
| 10 | imcl 11136 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 11 | 10 | recnd 8100 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
| 12 | 11 | negnegd 8373 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → --(ℑ‘𝐴) = (ℑ‘𝐴)) |
| 13 | 9, 12 | eqtrd 2237 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = (ℑ‘𝐴)) |
| 14 | 7, 13 | eqtrd 2237 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = (ℑ‘𝐴)) |
| 15 | 14 | oveq2d 5959 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘(∗‘(∗‘𝐴)))) = (i · (ℑ‘𝐴))) |
| 16 | 5, 15 | oveq12d 5961 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| 17 | cjcl 11130 | . . 3 ⊢ ((∗‘𝐴) ∈ ℂ → (∗‘(∗‘𝐴)) ∈ ℂ) | |
| 18 | replim 11141 | . . 3 ⊢ ((∗‘(∗‘𝐴)) ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴)))))) | |
| 19 | 1, 17, 18 | 3syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴)))))) |
| 20 | replim 11141 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 21 | 16, 19, 20 | 3eqtr4d 2247 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ici 7926 + caddc 7927 · cmul 7929 -cneg 8243 ∗ccj 11121 ℜcre 11122 ℑcim 11123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-2 9094 df-cj 11124 df-re 11125 df-im 11126 |
| This theorem is referenced by: cjmulrcl 11169 cjreim2 11186 cj11 11187 cjcji 11197 cjcjd 11225 abscj 11334 sqabsadd 11337 sqabssub 11338 plycjlemc 15203 |
| Copyright terms: Public domain | W3C validator |