Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjcj | GIF version |
Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjcj | ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 10790 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | recj 10809 | . . . . 5 ⊢ ((∗‘𝐴) ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴))) |
4 | recj 10809 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | |
5 | 3, 4 | eqtrd 2198 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘𝐴)) |
6 | imcj 10817 | . . . . . 6 ⊢ ((∗‘𝐴) ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴))) | |
7 | 1, 6 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴))) |
8 | imcj 10817 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | |
9 | 8 | negeqd 8093 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = --(ℑ‘𝐴)) |
10 | imcl 10796 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
11 | 10 | recnd 7927 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
12 | 11 | negnegd 8200 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → --(ℑ‘𝐴) = (ℑ‘𝐴)) |
13 | 9, 12 | eqtrd 2198 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = (ℑ‘𝐴)) |
14 | 7, 13 | eqtrd 2198 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = (ℑ‘𝐴)) |
15 | 14 | oveq2d 5858 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘(∗‘(∗‘𝐴)))) = (i · (ℑ‘𝐴))) |
16 | 5, 15 | oveq12d 5860 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
17 | cjcl 10790 | . . 3 ⊢ ((∗‘𝐴) ∈ ℂ → (∗‘(∗‘𝐴)) ∈ ℂ) | |
18 | replim 10801 | . . 3 ⊢ ((∗‘(∗‘𝐴)) ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴)))))) | |
19 | 1, 17, 18 | 3syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴)))))) |
20 | replim 10801 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
21 | 16, 19, 20 | 3eqtr4d 2208 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ici 7755 + caddc 7756 · cmul 7758 -cneg 8070 ∗ccj 10781 ℜcre 10782 ℑcim 10783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-2 8916 df-cj 10784 df-re 10785 df-im 10786 |
This theorem is referenced by: cjmulrcl 10829 cjreim2 10846 cj11 10847 cjcji 10857 cjcjd 10885 abscj 10994 sqabsadd 10997 sqabssub 10998 |
Copyright terms: Public domain | W3C validator |