Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjcj | GIF version |
Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjcj | ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 10725 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | recj 10744 | . . . . 5 ⊢ ((∗‘𝐴) ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴))) |
4 | recj 10744 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | |
5 | 3, 4 | eqtrd 2187 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘𝐴)) |
6 | imcj 10752 | . . . . . 6 ⊢ ((∗‘𝐴) ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴))) | |
7 | 1, 6 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴))) |
8 | imcj 10752 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | |
9 | 8 | negeqd 8049 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = --(ℑ‘𝐴)) |
10 | imcl 10731 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
11 | 10 | recnd 7885 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
12 | 11 | negnegd 8156 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → --(ℑ‘𝐴) = (ℑ‘𝐴)) |
13 | 9, 12 | eqtrd 2187 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = (ℑ‘𝐴)) |
14 | 7, 13 | eqtrd 2187 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = (ℑ‘𝐴)) |
15 | 14 | oveq2d 5830 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘(∗‘(∗‘𝐴)))) = (i · (ℑ‘𝐴))) |
16 | 5, 15 | oveq12d 5832 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
17 | cjcl 10725 | . . 3 ⊢ ((∗‘𝐴) ∈ ℂ → (∗‘(∗‘𝐴)) ∈ ℂ) | |
18 | replim 10736 | . . 3 ⊢ ((∗‘(∗‘𝐴)) ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴)))))) | |
19 | 1, 17, 18 | 3syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴)))))) |
20 | replim 10736 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
21 | 16, 19, 20 | 3eqtr4d 2197 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ∈ wcel 2125 ‘cfv 5163 (class class class)co 5814 ℂcc 7709 ici 7713 + caddc 7714 · cmul 7716 -cneg 8026 ∗ccj 10716 ℜcre 10717 ℑcim 10718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-po 4251 df-iso 4252 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-2 8871 df-cj 10719 df-re 10720 df-im 10721 |
This theorem is referenced by: cjmulrcl 10764 cjreim2 10781 cj11 10782 cjcji 10792 cjcjd 10820 abscj 10929 sqabsadd 10932 sqabssub 10933 |
Copyright terms: Public domain | W3C validator |