| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efimpi | GIF version | ||
| Description: The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
| Ref | Expression |
|---|---|
| efimpi | ⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn 15201 | . . . . 5 ⊢ π ∈ ℂ | |
| 2 | subcl 8270 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (𝐴 − π) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − π) ∈ ℂ) |
| 4 | efival 11985 | . . . 4 ⊢ ((𝐴 − π) ∈ ℂ → (exp‘(i · (𝐴 − π))) = ((cos‘(𝐴 − π)) + (i · (sin‘(𝐴 − π))))) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = ((cos‘(𝐴 − π)) + (i · (sin‘(𝐴 − π))))) |
| 6 | coscl 11960 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 7 | ax-icn 8019 | . . . . . 6 ⊢ i ∈ ℂ | |
| 8 | sincl 11959 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 9 | mulcl 8051 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ) | |
| 10 | 7, 8, 9 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (sin‘𝐴)) ∈ ℂ) |
| 11 | 6, 10 | negdid 8395 | . . . 4 ⊢ (𝐴 ∈ ℂ → -((cos‘𝐴) + (i · (sin‘𝐴))) = (-(cos‘𝐴) + -(i · (sin‘𝐴)))) |
| 12 | cosmpi 15230 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) | |
| 13 | sinmpi 15229 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | |
| 14 | 13 | oveq2d 5959 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (sin‘(𝐴 − π))) = (i · -(sin‘𝐴))) |
| 15 | mulneg2 8467 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴))) | |
| 16 | 7, 8, 15 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴))) |
| 17 | 14, 16 | eqtrd 2237 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (sin‘(𝐴 − π))) = -(i · (sin‘𝐴))) |
| 18 | 12, 17 | oveq12d 5961 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘(𝐴 − π)) + (i · (sin‘(𝐴 − π)))) = (-(cos‘𝐴) + -(i · (sin‘𝐴)))) |
| 19 | 11, 18 | eqtr4d 2240 | . . 3 ⊢ (𝐴 ∈ ℂ → -((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘(𝐴 − π)) + (i · (sin‘(𝐴 − π))))) |
| 20 | 5, 19 | eqtr4d 2240 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -((cos‘𝐴) + (i · (sin‘𝐴)))) |
| 21 | efival 11985 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
| 22 | 21 | negeqd 8266 | . 2 ⊢ (𝐴 ∈ ℂ → -(exp‘(i · 𝐴)) = -((cos‘𝐴) + (i · (sin‘𝐴)))) |
| 23 | 20, 22 | eqtr4d 2240 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ici 7926 + caddc 7927 · cmul 7929 − cmin 8242 -cneg 8243 expce 11895 sincsin 11897 cosccos 11898 πcpi 11900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-map 6736 df-pm 6737 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-ioo 10013 df-ioc 10014 df-ico 10015 df-icc 10016 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11068 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 df-ef 11901 df-sin 11903 df-cos 11904 df-pi 11906 df-rest 13015 df-topgen 13034 df-psmet 14247 df-xmet 14248 df-met 14249 df-bl 14250 df-mopn 14251 df-top 14412 df-topon 14425 df-bases 14457 df-ntr 14510 df-cn 14602 df-cnp 14603 df-tx 14667 df-cncf 14985 df-limced 15070 df-dvap 15071 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |