![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > minabs | GIF version |
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.) |
Ref | Expression |
---|---|
minabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmax 11238 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) | |
2 | renegcl 8218 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | renegcl 8218 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
4 | maxabs 11218 | . . . . 5 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) | |
5 | 2, 3, 4 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
6 | 5 | negeqd 8152 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
7 | 1, 6 | eqtrd 2210 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
8 | simpl 109 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
9 | 8 | recnd 7986 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
10 | 9 | negcld 8255 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ) |
11 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
12 | 11 | recnd 7986 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ) |
13 | 12 | negcld 8255 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℂ) |
14 | 10, 13 | addcld 7977 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 + -𝐵) ∈ ℂ) |
15 | 10, 13 | subcld 8268 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) ∈ ℂ) |
16 | 15 | abscld 11190 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℝ) |
17 | 16 | recnd 7986 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℂ) |
18 | 14, 17 | addcld 7977 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) ∈ ℂ) |
19 | 2cnd 8992 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ) | |
20 | 2ap0 9012 | . . . 4 ⊢ 2 # 0 | |
21 | 20 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0) |
22 | 18, 19, 21 | divnegapd 8760 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
23 | 14, 17 | negdi2d 8282 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵)))) |
24 | 10, 13 | negdid 8281 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (--𝐴 + --𝐵)) |
25 | 9 | negnegd 8259 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
26 | 12 | negnegd 8259 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵) |
27 | 25, 26 | oveq12d 5893 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (--𝐴 + --𝐵) = (𝐴 + 𝐵)) |
28 | 24, 27 | eqtrd 2210 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (𝐴 + 𝐵)) |
29 | 9, 12 | neg2subd 8285 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) |
30 | 29 | fveq2d 5520 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐵 − 𝐴))) |
31 | 9, 12 | abssubd 11202 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
32 | 30, 31 | eqtr4d 2213 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐴 − 𝐵))) |
33 | 28, 32 | oveq12d 5893 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) |
34 | 23, 33 | eqtrd 2210 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) |
35 | 34 | oveq1d 5890 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
36 | 7, 22, 35 | 3eqtrd 2214 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {cpr 3594 class class class wbr 4004 ‘cfv 5217 (class class class)co 5875 supcsup 6981 infcinf 6982 ℝcr 7810 0cc0 7811 + caddc 7814 < clt 7992 − cmin 8128 -cneg 8129 # cap 8538 / cdiv 8629 2c2 8970 abscabs 11006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 ax-caucvg 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-isom 5226 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-sup 6983 df-inf 6984 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-n0 9177 df-z 9254 df-uz 9529 df-rp 9654 df-seqfrec 10446 df-exp 10520 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 |
This theorem is referenced by: bdtri 11248 |
Copyright terms: Public domain | W3C validator |