ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minabs GIF version

Theorem minabs 11228
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
minabs ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))

Proof of Theorem minabs
StepHypRef Expression
1 minmax 11222 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
2 renegcl 8208 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
3 renegcl 8208 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 maxabs 11202 . . . . 5 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
52, 3, 4syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
65negeqd 8142 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
71, 6eqtrd 2210 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
8 simpl 109 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
98recnd 7976 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
109negcld 8245 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ)
11 simpr 110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
1211recnd 7976 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
1312negcld 8245 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℂ)
1410, 13addcld 7967 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 + -𝐵) ∈ ℂ)
1510, 13subcld 8258 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) ∈ ℂ)
1615abscld 11174 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℝ)
1716recnd 7976 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℂ)
1814, 17addcld 7967 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) ∈ ℂ)
19 2cnd 8981 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
20 2ap0 9001 . . . 4 2 # 0
2120a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0)
2218, 19, 21divnegapd 8749 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
2314, 17negdi2d 8272 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))))
2410, 13negdid 8271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (--𝐴 + --𝐵))
259negnegd 8249 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴)
2612negnegd 8249 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵)
2725, 26oveq12d 5887 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (--𝐴 + --𝐵) = (𝐴 + 𝐵))
2824, 27eqtrd 2210 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (𝐴 + 𝐵))
299, 12neg2subd 8275 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) = (𝐵𝐴))
3029fveq2d 5515 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐵𝐴)))
319, 12abssubd 11186 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
3230, 31eqtr4d 2213 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐴𝐵)))
3328, 32oveq12d 5887 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))))
3423, 33eqtrd 2210 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))))
3534oveq1d 5884 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
367, 22, 353eqtrd 2214 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {cpr 3592   class class class wbr 4000  cfv 5212  (class class class)co 5869  supcsup 6975  infcinf 6976  cr 7801  0cc0 7802   + caddc 7805   < clt 7982  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  2c2 8959  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  bdtri  11232
  Copyright terms: Public domain W3C validator