Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > minabs | GIF version |
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.) |
Ref | Expression |
---|---|
minabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmax 11171 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) | |
2 | renegcl 8159 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | renegcl 8159 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
4 | maxabs 11151 | . . . . 5 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) | |
5 | 2, 3, 4 | syl2an 287 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
6 | 5 | negeqd 8093 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
7 | 1, 6 | eqtrd 2198 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
8 | simpl 108 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
9 | 8 | recnd 7927 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
10 | 9 | negcld 8196 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ) |
11 | simpr 109 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
12 | 11 | recnd 7927 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ) |
13 | 12 | negcld 8196 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℂ) |
14 | 10, 13 | addcld 7918 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 + -𝐵) ∈ ℂ) |
15 | 10, 13 | subcld 8209 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) ∈ ℂ) |
16 | 15 | abscld 11123 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℝ) |
17 | 16 | recnd 7927 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℂ) |
18 | 14, 17 | addcld 7918 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) ∈ ℂ) |
19 | 2cnd 8930 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ) | |
20 | 2ap0 8950 | . . . 4 ⊢ 2 # 0 | |
21 | 20 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0) |
22 | 18, 19, 21 | divnegapd 8699 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
23 | 14, 17 | negdi2d 8223 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵)))) |
24 | 10, 13 | negdid 8222 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (--𝐴 + --𝐵)) |
25 | 9 | negnegd 8200 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
26 | 12 | negnegd 8200 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵) |
27 | 25, 26 | oveq12d 5860 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (--𝐴 + --𝐵) = (𝐴 + 𝐵)) |
28 | 24, 27 | eqtrd 2198 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (𝐴 + 𝐵)) |
29 | 9, 12 | neg2subd 8226 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) |
30 | 29 | fveq2d 5490 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐵 − 𝐴))) |
31 | 9, 12 | abssubd 11135 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
32 | 30, 31 | eqtr4d 2201 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐴 − 𝐵))) |
33 | 28, 32 | oveq12d 5860 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) |
34 | 23, 33 | eqtrd 2198 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) |
35 | 34 | oveq1d 5857 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
36 | 7, 22, 35 | 3eqtrd 2202 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cpr 3577 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 supcsup 6947 infcinf 6948 ℝcr 7752 0cc0 7753 + caddc 7756 < clt 7933 − cmin 8069 -cneg 8070 # cap 8479 / cdiv 8568 2c2 8908 abscabs 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: bdtri 11181 |
Copyright terms: Public domain | W3C validator |