ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minabs GIF version

Theorem minabs 11007
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
minabs ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))

Proof of Theorem minabs
StepHypRef Expression
1 minmax 11001 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
2 renegcl 8023 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
3 renegcl 8023 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 maxabs 10981 . . . . 5 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
52, 3, 4syl2an 287 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
65negeqd 7957 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
71, 6eqtrd 2172 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
8 simpl 108 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
98recnd 7794 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
109negcld 8060 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ)
11 simpr 109 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
1211recnd 7794 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
1312negcld 8060 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℂ)
1410, 13addcld 7785 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 + -𝐵) ∈ ℂ)
1510, 13subcld 8073 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) ∈ ℂ)
1615abscld 10953 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℝ)
1716recnd 7794 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℂ)
1814, 17addcld 7785 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) ∈ ℂ)
19 2cnd 8793 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
20 2ap0 8813 . . . 4 2 # 0
2120a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0)
2218, 19, 21divnegapd 8563 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2))
2314, 17negdi2d 8087 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))))
2410, 13negdid 8086 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (--𝐴 + --𝐵))
259negnegd 8064 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴)
2612negnegd 8064 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵)
2725, 26oveq12d 5792 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (--𝐴 + --𝐵) = (𝐴 + 𝐵))
2824, 27eqtrd 2172 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (𝐴 + 𝐵))
299, 12neg2subd 8090 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) = (𝐵𝐴))
3029fveq2d 5425 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐵𝐴)))
319, 12abssubd 10965 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
3230, 31eqtr4d 2175 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐴𝐵)))
3328, 32oveq12d 5792 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))))
3423, 33eqtrd 2172 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))))
3534oveq1d 5789 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
367, 22, 353eqtrd 2176 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cpr 3528   class class class wbr 3929  cfv 5123  (class class class)co 5774  supcsup 6869  infcinf 6870  cr 7619  0cc0 7620   + caddc 7623   < clt 7800  cmin 7933  -cneg 7934   # cap 8343   / cdiv 8432  2c2 8771  abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  bdtri  11011
  Copyright terms: Public domain W3C validator