| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > minabs | GIF version | ||
| Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.) |
| Ref | Expression |
|---|---|
| minabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minmax 11585 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) | |
| 2 | renegcl 8340 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 3 | renegcl 8340 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 4 | maxabs 11564 | . . . . 5 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) | |
| 5 | 2, 3, 4 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) = (((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
| 6 | 5 | negeqd 8274 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
| 7 | 1, 6 | eqtrd 2239 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
| 8 | simpl 109 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 9 | 8 | recnd 8108 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
| 10 | 9 | negcld 8377 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ) |
| 11 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 12 | 11 | recnd 8108 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ) |
| 13 | 12 | negcld 8377 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℂ) |
| 14 | 10, 13 | addcld 8099 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 + -𝐵) ∈ ℂ) |
| 15 | 10, 13 | subcld 8390 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) ∈ ℂ) |
| 16 | 15 | abscld 11536 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℝ) |
| 17 | 16 | recnd 8108 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) ∈ ℂ) |
| 18 | 14, 17 | addcld 8099 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) ∈ ℂ) |
| 19 | 2cnd 9116 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ) | |
| 20 | 2ap0 9136 | . . . 4 ⊢ 2 # 0 | |
| 21 | 20 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0) |
| 22 | 18, 19, 21 | divnegapd 8883 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2)) |
| 23 | 14, 17 | negdi2d 8404 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵)))) |
| 24 | 10, 13 | negdid 8403 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (--𝐴 + --𝐵)) |
| 25 | 9 | negnegd 8381 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
| 26 | 12 | negnegd 8381 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵) |
| 27 | 25, 26 | oveq12d 5969 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (--𝐴 + --𝐵) = (𝐴 + 𝐵)) |
| 28 | 24, 27 | eqtrd 2239 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(-𝐴 + -𝐵) = (𝐴 + 𝐵)) |
| 29 | 9, 12 | neg2subd 8407 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) |
| 30 | 29 | fveq2d 5587 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐵 − 𝐴))) |
| 31 | 9, 12 | abssubd 11548 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| 32 | 30, 31 | eqtr4d 2242 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(-𝐴 − -𝐵)) = (abs‘(𝐴 − 𝐵))) |
| 33 | 28, 32 | oveq12d 5969 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(-𝐴 + -𝐵) − (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) |
| 34 | 23, 33 | eqtrd 2239 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) = ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) |
| 35 | 34 | oveq1d 5966 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-((-𝐴 + -𝐵) + (abs‘(-𝐴 − -𝐵))) / 2) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
| 36 | 7, 22, 35 | 3eqtrd 2243 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cpr 3635 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 supcsup 7091 infcinf 7092 ℝcr 7931 0cc0 7932 + caddc 7935 < clt 8114 − cmin 8250 -cneg 8251 # cap 8661 / cdiv 8752 2c2 9094 abscabs 11352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-rp 9783 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 |
| This theorem is referenced by: bdtri 11595 mincncf 15132 |
| Copyright terms: Public domain | W3C validator |