ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oexpneg GIF version

Theorem oexpneg 12018
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
Assertion
Ref Expression
oexpneg ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴𝑁) = -(𝐴𝑁))

Proof of Theorem oexpneg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnz 9336 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 odd2np1 12014 . . . . 5 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
31, 2syl 14 . . . 4 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
43biimpa 296 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
543adant1 1017 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ∈ ℂ)
7 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((2 · 𝑛) + 1) = 𝑁)
8 simpl2 1003 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑁 ∈ ℕ)
98nncnd 8996 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑁 ∈ ℂ)
10 1cnd 8035 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 1 ∈ ℂ)
11 2z 9345 . . . . . . . . . . 11 2 ∈ ℤ
12 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℤ)
13 zmulcl 9370 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
1411, 12, 13sylancr 414 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℤ)
1514zcnd 9440 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℂ)
169, 10, 15subadd2d 8349 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝑁 − 1) = (2 · 𝑛) ↔ ((2 · 𝑛) + 1) = 𝑁))
177, 16mpbird 167 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝑁 − 1) = (2 · 𝑛))
18 nnm1nn0 9281 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
198, 18syl 14 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝑁 − 1) ∈ ℕ0)
2017, 19eqeltrrd 2271 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℕ0)
216, 20expcld 10744 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) ∈ ℂ)
2221, 6mulneg2d 8431 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = -((𝐴↑(2 · 𝑛)) · 𝐴))
23 sqneg 10669 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
246, 23syl 14 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑2) = (𝐴↑2))
2524oveq1d 5933 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑2)↑𝑛) = ((𝐴↑2)↑𝑛))
266negcld 8317 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ∈ ℂ)
27 2re 9052 . . . . . . . . . . 11 2 ∈ ℝ
2827a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 2 ∈ ℝ)
2912zred 9439 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℝ)
30 2pos 9073 . . . . . . . . . . 11 0 < 2
3130a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 0 < 2)
3220nn0ge0d 9296 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 0 ≤ (2 · 𝑛))
33 prodge0 8873 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 < 2 ∧ 0 ≤ (2 · 𝑛))) → 0 ≤ 𝑛)
3428, 29, 31, 32, 33syl22anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 0 ≤ 𝑛)
35 elnn0z 9330 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))
3612, 34, 35sylanbrc 417 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℕ0)
37 2nn0 9257 . . . . . . . . 9 2 ∈ ℕ0
3837a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 2 ∈ ℕ0)
3926, 36, 38expmuld 10747 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛))
406, 36, 38expmuld 10747 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛))
4125, 39, 403eqtr4d 2236 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = (𝐴↑(2 · 𝑛)))
4241oveq1d 5933 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = ((𝐴↑(2 · 𝑛)) · -𝐴))
4326, 20expp1d 10745 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = ((-𝐴↑(2 · 𝑛)) · -𝐴))
447oveq2d 5934 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = (-𝐴𝑁))
4543, 44eqtr3d 2228 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
4642, 45eqtr3d 2228 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
4722, 46eqtr3d 2228 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = (-𝐴𝑁))
486, 20expp1d 10745 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = ((𝐴↑(2 · 𝑛)) · 𝐴))
497oveq2d 5934 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = (𝐴𝑁))
5048, 49eqtr3d 2228 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · 𝐴) = (𝐴𝑁))
5150negeqd 8214 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = -(𝐴𝑁))
5247, 51eqtr3d 2228 . 2 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴𝑁) = -(𝐴𝑁))
535, 52rexlimddv 2616 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴𝑁) = -(𝐴𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190  -cneg 8191  cn 8982  2c2 9033  0cn0 9240  cz 9317  cexp 10609  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  lgseisenlem1  15186  lgseisenlem4  15189  m1lgs  15192
  Copyright terms: Public domain W3C validator