ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oexpneg GIF version

Theorem oexpneg 11882
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
Assertion
Ref Expression
oexpneg ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (-๐ดโ†‘๐‘) = -(๐ดโ†‘๐‘))

Proof of Theorem oexpneg
Dummy variable ๐‘› is distinct from all other variables.
StepHypRef Expression
1 nnz 9272 . . . . 5 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„ค)
2 odd2np1 11878 . . . . 5 (๐‘ โˆˆ โ„ค โ†’ (ยฌ 2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘))
31, 2syl 14 . . . 4 (๐‘ โˆˆ โ„• โ†’ (ยฌ 2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘))
43biimpa 296 . . 3 ((๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘)
543adant1 1015 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘)
6 simpl1 1000 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐ด โˆˆ โ„‚)
7 simprr 531 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((2 ยท ๐‘›) + 1) = ๐‘)
8 simpl2 1001 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘ โˆˆ โ„•)
98nncnd 8933 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘ โˆˆ โ„‚)
10 1cnd 7973 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 1 โˆˆ โ„‚)
11 2z 9281 . . . . . . . . . . 11 2 โˆˆ โ„ค
12 simprl 529 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘› โˆˆ โ„ค)
13 zmulcl 9306 . . . . . . . . . . 11 ((2 โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ (2 ยท ๐‘›) โˆˆ โ„ค)
1411, 12, 13sylancr 414 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (2 ยท ๐‘›) โˆˆ โ„ค)
1514zcnd 9376 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (2 ยท ๐‘›) โˆˆ โ„‚)
169, 10, 15subadd2d 8287 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐‘ โˆ’ 1) = (2 ยท ๐‘›) โ†” ((2 ยท ๐‘›) + 1) = ๐‘))
177, 16mpbird 167 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐‘ โˆ’ 1) = (2 ยท ๐‘›))
18 nnm1nn0 9217 . . . . . . . 8 (๐‘ โˆˆ โ„• โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•0)
198, 18syl 14 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•0)
2017, 19eqeltrrd 2255 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (2 ยท ๐‘›) โˆˆ โ„•0)
216, 20expcld 10654 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘(2 ยท ๐‘›)) โˆˆ โ„‚)
2221, 6mulneg2d 8369 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = -((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด))
23 sqneg 10579 . . . . . . . . 9 (๐ด โˆˆ โ„‚ โ†’ (-๐ดโ†‘2) = (๐ดโ†‘2))
246, 23syl 14 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘2) = (๐ดโ†‘2))
2524oveq1d 5890 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((-๐ดโ†‘2)โ†‘๐‘›) = ((๐ดโ†‘2)โ†‘๐‘›))
266negcld 8255 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ -๐ด โˆˆ โ„‚)
27 2re 8989 . . . . . . . . . . 11 2 โˆˆ โ„
2827a1i 9 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 2 โˆˆ โ„)
2912zred 9375 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘› โˆˆ โ„)
30 2pos 9010 . . . . . . . . . . 11 0 < 2
3130a1i 9 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 0 < 2)
3220nn0ge0d 9232 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 0 โ‰ค (2 ยท ๐‘›))
33 prodge0 8811 . . . . . . . . . 10 (((2 โˆˆ โ„ โˆง ๐‘› โˆˆ โ„) โˆง (0 < 2 โˆง 0 โ‰ค (2 ยท ๐‘›))) โ†’ 0 โ‰ค ๐‘›)
3428, 29, 31, 32, 33syl22anc 1239 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 0 โ‰ค ๐‘›)
35 elnn0z 9266 . . . . . . . . 9 (๐‘› โˆˆ โ„•0 โ†” (๐‘› โˆˆ โ„ค โˆง 0 โ‰ค ๐‘›))
3612, 34, 35sylanbrc 417 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ๐‘› โˆˆ โ„•0)
37 2nn0 9193 . . . . . . . . 9 2 โˆˆ โ„•0
3837a1i 9 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ 2 โˆˆ โ„•0)
3926, 36, 38expmuld 10657 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘(2 ยท ๐‘›)) = ((-๐ดโ†‘2)โ†‘๐‘›))
406, 36, 38expmuld 10657 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘(2 ยท ๐‘›)) = ((๐ดโ†‘2)โ†‘๐‘›))
4125, 39, 403eqtr4d 2220 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘(2 ยท ๐‘›)) = (๐ดโ†‘(2 ยท ๐‘›)))
4241oveq1d 5890 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((-๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = ((๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด))
4326, 20expp1d 10655 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘((2 ยท ๐‘›) + 1)) = ((-๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด))
447oveq2d 5891 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘((2 ยท ๐‘›) + 1)) = (-๐ดโ†‘๐‘))
4543, 44eqtr3d 2212 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((-๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = (-๐ดโ†‘๐‘))
4642, 45eqtr3d 2212 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐ดโ†‘(2 ยท ๐‘›)) ยท -๐ด) = (-๐ดโ†‘๐‘))
4722, 46eqtr3d 2212 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ -((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด) = (-๐ดโ†‘๐‘))
486, 20expp1d 10655 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘((2 ยท ๐‘›) + 1)) = ((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด))
497oveq2d 5891 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (๐ดโ†‘((2 ยท ๐‘›) + 1)) = (๐ดโ†‘๐‘))
5048, 49eqtr3d 2212 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ ((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด) = (๐ดโ†‘๐‘))
5150negeqd 8152 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ -((๐ดโ†‘(2 ยท ๐‘›)) ยท ๐ด) = -(๐ดโ†‘๐‘))
5247, 51eqtr3d 2212 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง (๐‘› โˆˆ โ„ค โˆง ((2 ยท ๐‘›) + 1) = ๐‘)) โ†’ (-๐ดโ†‘๐‘) = -(๐ดโ†‘๐‘))
535, 52rexlimddv 2599 1 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (-๐ดโ†‘๐‘) = -(๐ดโ†‘๐‘))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148  โˆƒwrex 2456   class class class wbr 4004  (class class class)co 5875  โ„‚cc 7809  โ„cr 7810  0cc0 7811  1c1 7812   + caddc 7814   ยท cmul 7816   < clt 7992   โ‰ค cle 7993   โˆ’ cmin 8128  -cneg 8129  โ„•cn 8919  2c2 8970  โ„•0cn0 9176  โ„คcz 9253  โ†‘cexp 10519   โˆฅ cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-exp 10520  df-dvds 11795
This theorem is referenced by:  lgseisenlem1  14453  m1lgs  14455
  Copyright terms: Public domain W3C validator