ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrpd GIF version

Theorem nnrpd 9233
Description: A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
nnrpd.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnrpd (𝜑𝐴 ∈ ℝ+)

Proof of Theorem nnrpd
StepHypRef Expression
1 nnrpd.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnrp 9204 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
31, 2syl 14 1 (𝜑𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1439  cn 8483  +crp 9195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1re 7500  ax-addrcl 7503  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-xp 4458  df-cnv 4460  df-iota 4993  df-fv 5036  df-ov 5669  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-inn 8484  df-rp 9196
This theorem is referenced by:  qtri3or  9715  qbtwnrelemcalc  9728  qbtwnre  9729  flqdiv  9789  addmodlteq  9866  nnesq  10134  bcpasc  10235  cvg1nlemcxze  10476  cvg1nlemcau  10478  cvg1nlemres  10479  resqrexlemnmsq  10511  resqrexlemnm  10512  resqrexlemcvg  10513  climrecvg1n  10798  climcvg1nlem  10799  cvgratnnlembern  10978  cvgratnnlemfm  10984  mertenslemi1  10990  mertenslem2  10991  efcllemp  11009  ege2le3  11022  eftlub  11041  effsumlt  11043  efgt1p2  11046  eirraplem  11125  prmind2  11441  sqrt2irrlem  11479  sqrt2irraplemnn  11496  sqrt2irrap  11497
  Copyright terms: Public domain W3C validator