ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oa1suc GIF version

Theorem oa1suc 6492
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
oa1suc (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)

Proof of Theorem oa1suc
StepHypRef Expression
1 df-1o 6441 . . . 4 1o = suc ∅
21oveq2i 5907 . . 3 (𝐴 +o 1o) = (𝐴 +o suc ∅)
3 peano1 4611 . . . 4 ∅ ∈ ω
4 onasuc 6491 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
53, 4mpan2 425 . . 3 (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅))
62, 5eqtrid 2234 . 2 (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅))
7 oa0 6482 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
8 suceq 4420 . . 3 ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴)
97, 8syl 14 . 2 (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴)
106, 9eqtrd 2222 1 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  c0 3437  Oncon0 4381  suc csuc 4383  ωcom 4607  (class class class)co 5896  1oc1o 6434   +o coa 6438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-1o 6441  df-oadd 6445
This theorem is referenced by:  o1p1e2  6493  oawordriexmid  6495  nnaordex  6553  indpi  7371  prarloclemlo  7523
  Copyright terms: Public domain W3C validator