| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oa1suc | GIF version | ||
| Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| oa1suc | ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6520 | . . . 4 ⊢ 1o = suc ∅ | |
| 2 | 1 | oveq2i 5973 | . . 3 ⊢ (𝐴 +o 1o) = (𝐴 +o suc ∅) |
| 3 | peano1 4655 | . . . 4 ⊢ ∅ ∈ ω | |
| 4 | onasuc 6570 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) | |
| 5 | 3, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o suc ∅) = suc (𝐴 +o ∅)) |
| 6 | 2, 5 | eqtrid 2251 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc (𝐴 +o ∅)) |
| 7 | oa0 6561 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 8 | suceq 4462 | . . 3 ⊢ ((𝐴 +o ∅) = 𝐴 → suc (𝐴 +o ∅) = suc 𝐴) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝐴 ∈ On → suc (𝐴 +o ∅) = suc 𝐴) |
| 10 | 6, 9 | eqtrd 2239 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∅c0 3464 Oncon0 4423 suc csuc 4425 ωcom 4651 (class class class)co 5962 1oc1o 6513 +o coa 6517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-oadd 6524 |
| This theorem is referenced by: o1p1e2 6572 oawordriexmid 6574 nnaordex 6632 indpi 7485 prarloclemlo 7637 |
| Copyright terms: Public domain | W3C validator |