ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppraddg GIF version

Theorem oppraddg 14039
Description: Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppradd.2 + = (+g𝑅)
Assertion
Ref Expression
oppraddg (𝑅𝑉+ = (+g𝑂))

Proof of Theorem oppraddg
StepHypRef Expression
1 oppradd.2 . 2 + = (+g𝑅)
2 opprbas.1 . . 3 𝑂 = (oppr𝑅)
3 plusgslid 13145 . . 3 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4 plusgndxnmulrndx 13166 . . 3 (+g‘ndx) ≠ (.r‘ndx)
52, 3, 4opprsllem 14037 . 2 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
61, 5eqtrid 2274 1 (𝑅𝑉+ = (+g𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5318  +gcplusg 13110  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-sets 13039  df-plusg 13123  df-mulr 13124  df-oppr 14031
This theorem is referenced by:  opprrng  14040  opprrngbg  14041  opprring  14042  opprringbg  14043  oppr0g  14044  opprnegg  14046  opprsubgg  14047  mulgass3  14048  rhmopp  14140  crngridl  14494
  Copyright terms: Public domain W3C validator