| Step | Hyp | Ref
| Expression |
| 1 | | seq3caopr3.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzfz2 10124 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 4 | | fveq2 5561 |
. . . . 5
⊢ (𝑧 = 𝑀 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑀)) |
| 5 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑀)) |
| 6 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑀)) |
| 7 | 5, 6 | oveq12d 5943 |
. . . . 5
⊢ (𝑧 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))) |
| 8 | 4, 7 | eqeq12d 2211 |
. . . 4
⊢ (𝑧 = 𝑀 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))) |
| 9 | 8 | imbi2d 230 |
. . 3
⊢ (𝑧 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))))) |
| 10 | | fveq2 5561 |
. . . . 5
⊢ (𝑧 = 𝑛 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑛)) |
| 11 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑛)) |
| 12 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑛)) |
| 13 | 11, 12 | oveq12d 5943 |
. . . . 5
⊢ (𝑧 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) |
| 14 | 10, 13 | eqeq12d 2211 |
. . . 4
⊢ (𝑧 = 𝑛 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))) |
| 15 | 14 | imbi2d 230 |
. . 3
⊢ (𝑧 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))))) |
| 16 | | fveq2 5561 |
. . . . 5
⊢ (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘(𝑛 + 1))) |
| 17 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
| 18 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘(𝑛 + 1))) |
| 19 | 17, 18 | oveq12d 5943 |
. . . . 5
⊢ (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))) |
| 20 | 16, 19 | eqeq12d 2211 |
. . . 4
⊢ (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))) |
| 21 | 20 | imbi2d 230 |
. . 3
⊢ (𝑧 = (𝑛 + 1) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))) |
| 22 | | fveq2 5561 |
. . . . 5
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑁)) |
| 23 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 24 | | fveq2 5561 |
. . . . . 6
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 25 | 23, 24 | oveq12d 5943 |
. . . . 5
⊢ (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |
| 26 | 22, 25 | eqeq12d 2211 |
. . . 4
⊢ (𝑧 = 𝑁 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))) |
| 27 | 26 | imbi2d 230 |
. . 3
⊢ (𝑧 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))))) |
| 28 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐻‘𝑘) = (𝐻‘𝑀)) |
| 29 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 30 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) |
| 31 | 29, 30 | oveq12d 5943 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
| 32 | 28, 31 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑘 = 𝑀 → ((𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ↔ (𝐻‘𝑀) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀)))) |
| 33 | | seq3caopr3.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
| 34 | 33 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
| 35 | | eluzel2 9623 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 36 | 1, 35 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 37 | | uzid 9632 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 38 | 36, 37 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 39 | 32, 34, 38 | rspcdva 2873 |
. . . . 5
⊢ (𝜑 → (𝐻‘𝑀) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
| 40 | | seq3caopr3.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
| 41 | 40 | ralrimivva 2579 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑄𝑦) ∈ 𝑆) |
| 42 | 41 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑄𝑦) ∈ 𝑆) |
| 43 | | seq3caopr3.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) |
| 44 | | seq3caopr3.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) |
| 45 | | oveq1 5932 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐹‘𝑘) → (𝑥𝑄𝑦) = ((𝐹‘𝑘)𝑄𝑦)) |
| 46 | 45 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐹‘𝑘) → ((𝑥𝑄𝑦) ∈ 𝑆 ↔ ((𝐹‘𝑘)𝑄𝑦) ∈ 𝑆)) |
| 47 | | oveq2 5933 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐺‘𝑘) → ((𝐹‘𝑘)𝑄𝑦) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
| 48 | 47 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐺‘𝑘) → (((𝐹‘𝑘)𝑄𝑦) ∈ 𝑆 ↔ ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ∈ 𝑆)) |
| 49 | 46, 48 | rspc2v 2881 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑘) ∈ 𝑆 ∧ (𝐺‘𝑘) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑄𝑦) ∈ 𝑆 → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ∈ 𝑆)) |
| 50 | 43, 44, 49 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑄𝑦) ∈ 𝑆 → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ∈ 𝑆)) |
| 51 | 42, 50 | mpd 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ∈ 𝑆) |
| 52 | 33, 51 | eqeltrd 2273 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) ∈ 𝑆) |
| 53 | 52 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐻‘𝑘) ∈ 𝑆) |
| 54 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝐻‘𝑘) = (𝐻‘𝑥)) |
| 55 | 54 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → ((𝐻‘𝑘) ∈ 𝑆 ↔ (𝐻‘𝑥) ∈ 𝑆)) |
| 56 | 55 | rspcv 2864 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)(𝐻‘𝑘) ∈ 𝑆 → (𝐻‘𝑥) ∈ 𝑆)) |
| 57 | 53, 56 | mpan9 281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑥) ∈ 𝑆) |
| 58 | | seq3caopr3.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 59 | 36, 57, 58 | seq3-1 10571 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻‘𝑀)) |
| 60 | 43 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆) |
| 61 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 62 | 61 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘𝑥) ∈ 𝑆)) |
| 63 | 62 | rspcv 2864 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆 → (𝐹‘𝑥) ∈ 𝑆)) |
| 64 | 60, 63 | mpan9 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 65 | 36, 64, 58 | seq3-1 10571 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 66 | 44 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆) |
| 67 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) |
| 68 | 67 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) |
| 69 | 68 | rspcv 2864 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆 → (𝐺‘𝑥) ∈ 𝑆)) |
| 70 | 66, 69 | mpan9 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 71 | 36, 70, 58 | seq3-1 10571 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 72 | 65, 71 | oveq12d 5943 |
. . . . 5
⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
| 73 | 39, 59, 72 | 3eqtr4d 2239 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))) |
| 74 | 73 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))) |
| 75 | | oveq1 5932 |
. . . . . 6
⊢
((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1)))) |
| 76 | | elfzouz 10243 |
. . . . . . . . 9
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 77 | 76 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 78 | 57 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑥) ∈ 𝑆) |
| 79 | 58 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 80 | 77, 78, 79 | seq3p1 10574 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1)))) |
| 81 | | seq3caopr3.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 82 | | fveq2 5561 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐻‘𝑘) = (𝐻‘(𝑛 + 1))) |
| 83 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 84 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
| 85 | 83, 84 | oveq12d 5943 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
| 86 | 82, 85 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ↔ (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
| 87 | 34 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
| 88 | | fzofzp1 10320 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 89 | | elfzuz 10113 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 90 | 88, 89 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 91 | 90 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 92 | 86, 87, 91 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
| 93 | 92 | oveq2d 5941 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
| 94 | 64 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 95 | 77, 94, 79 | seq3p1 10574 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 96 | 70 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 97 | 77, 96, 79 | seq3p1 10574 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 98 | 95, 97 | oveq12d 5943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 99 | 81, 93, 98 | 3eqtr4rd 2240 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1)))) |
| 100 | 80, 99 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) ↔ ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))))) |
| 101 | 75, 100 | imbitrrid 156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))) |
| 102 | 101 | expcom 116 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))) |
| 103 | 102 | a2d 26 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) → (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))) |
| 104 | 9, 15, 21, 27, 74, 103 | fzind2 10332 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))) |
| 105 | 3, 104 | mpcom 36 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |