| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resghm2b | GIF version | ||
| Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| resghm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| Ref | Expression |
|---|---|
| resghm2b | ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp1 13777 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)) |
| 3 | ghmgrp1 13777 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑈) → 𝑆 ∈ Grp) | |
| 4 | 3 | a1i 9 | . 2 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑈) → 𝑆 ∈ Grp)) |
| 5 | subgsubm 13728 | . . . . . 6 ⊢ (𝑋 ∈ (SubGrp‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇)) | |
| 6 | resghm2.u | . . . . . . 7 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
| 7 | 6 | resmhm2b 13517 | . . . . . 6 ⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
| 8 | 5, 7 | sylan 283 | . . . . 5 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
| 9 | 8 | adantl 277 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
| 10 | subgrcl 13711 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘𝑇) → 𝑇 ∈ Grp) | |
| 11 | 10 | adantr 276 | . . . . . 6 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑇 ∈ Grp) |
| 12 | ghmmhmb 13786 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
| 13 | 11, 12 | sylan2 286 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
| 14 | 13 | eleq2d 2299 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑇))) |
| 15 | 6 | subggrp 13709 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘𝑇) → 𝑈 ∈ Grp) |
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑈 ∈ Grp) |
| 17 | ghmmhmb 13786 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑈 ∈ Grp) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) | |
| 18 | 16, 17 | sylan2 286 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) |
| 19 | 18 | eleq2d 2299 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑈) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
| 20 | 9, 14, 19 | 3bitr4d 220 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| 21 | 20 | expcom 116 | . 2 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝑆 ∈ Grp → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))) |
| 22 | 2, 4, 21 | pm5.21ndd 710 | 1 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ran crn 4719 ‘cfv 5317 (class class class)co 6000 ↾s cress 13028 MndHom cmhm 13485 SubMndcsubmnd 13486 Grpcgrp 13528 SubGrpcsubg 13699 GrpHom cghm 13772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-mhm 13487 df-submnd 13488 df-grp 13531 df-minusg 13532 df-subg 13702 df-ghm 13773 |
| This theorem is referenced by: ghmghmrn 13795 resrhm2b 14207 |
| Copyright terms: Public domain | W3C validator |