Step | Hyp | Ref
| Expression |
1 | | eqid 2189 |
. 2
⊢
(Base‘𝑈) =
(Base‘𝑈) |
2 | | eqid 2189 |
. 2
⊢
(Base‘𝑇) =
(Base‘𝑇) |
3 | | eqid 2189 |
. 2
⊢
(+g‘𝑈) = (+g‘𝑈) |
4 | | eqid 2189 |
. 2
⊢
(+g‘𝑇) = (+g‘𝑇) |
5 | | resghm.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑋) |
6 | 5 | subggrp 13116 |
. . 3
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp) |
7 | 6 | adantl 277 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp) |
8 | | ghmgrp2 13185 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) |
9 | 8 | adantr 276 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp) |
10 | | eqid 2189 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
11 | 10, 2 | ghmf 13186 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
12 | 10 | subgss 13113 |
. . . 4
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆)) |
13 | | fssres 5410 |
. . . 4
⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
14 | 11, 12, 13 | syl2an 289 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
15 | 5 | a1i 9 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 = (𝑆 ↾s 𝑋)) |
16 | | eqidd 2190 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (Base‘𝑆) = (Base‘𝑆)) |
17 | | subgrcl 13118 |
. . . . . 6
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑆 ∈ Grp) |
18 | 17 | adantl 277 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑆 ∈ Grp) |
19 | 12 | adantl 277 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆)) |
20 | 15, 16, 18, 19 | ressbas2d 12580 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈)) |
21 | 20 | feq2d 5372 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇))) |
22 | 14, 21 | mpbid 147 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇)) |
23 | | eleq2 2253 |
. . . . . 6
⊢ (𝑋 = (Base‘𝑈) → (𝑎 ∈ 𝑋 ↔ 𝑎 ∈ (Base‘𝑈))) |
24 | | eleq2 2253 |
. . . . . 6
⊢ (𝑋 = (Base‘𝑈) → (𝑏 ∈ 𝑋 ↔ 𝑏 ∈ (Base‘𝑈))) |
25 | 23, 24 | anbi12d 473 |
. . . . 5
⊢ (𝑋 = (Base‘𝑈) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈)))) |
26 | 20, 25 | syl 14 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈)))) |
27 | 26 | biimpar 297 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) |
28 | | simpll 527 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
29 | 19 | sselda 3170 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ (Base‘𝑆)) |
30 | 29 | adantrr 479 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ (Base‘𝑆)) |
31 | 19 | sselda 3170 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏 ∈ 𝑋) → 𝑏 ∈ (Base‘𝑆)) |
32 | 31 | adantrl 478 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ (Base‘𝑆)) |
33 | | eqid 2189 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
34 | 10, 33, 4 | ghmlin 13187 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
35 | 28, 30, 32, 34 | syl3anc 1249 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
36 | 5 | a1i 9 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 = (𝑆 ↾s 𝑋)) |
37 | | eqidd 2190 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubGrp‘𝑆) →
(+g‘𝑆) =
(+g‘𝑆)) |
38 | | id 19 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆)) |
39 | 36, 37, 38, 17 | ressplusgd 12640 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubGrp‘𝑆) →
(+g‘𝑆) =
(+g‘𝑈)) |
40 | 39 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (+g‘𝑆) = (+g‘𝑈)) |
41 | 40 | oveqd 5913 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) = (𝑎(+g‘𝑈)𝑏)) |
42 | 41 | fveq2d 5538 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏))) |
43 | 33 | subgcl 13123 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
44 | 43 | 3expb 1206 |
. . . . . . 7
⊢ ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
45 | 44 | adantll 476 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
46 | 45 | fvresd 5559 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
47 | 42, 46 | eqtr3d 2224 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
48 | | fvres 5558 |
. . . . . 6
⊢ (𝑎 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑎) = (𝐹‘𝑎)) |
49 | | fvres 5558 |
. . . . . 6
⊢ (𝑏 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑏) = (𝐹‘𝑏)) |
50 | 48, 49 | oveqan12d 5915 |
. . . . 5
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
51 | 50 | adantl 277 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
52 | 35, 47, 51 | 3eqtr4d 2232 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏))) |
53 | 27, 52 | syldan 282 |
. 2
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏))) |
54 | 1, 2, 3, 4, 7, 9, 22, 53 | isghmd 13191 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |