Proof of Theorem usgrislfuspgrdom
| Step | Hyp | Ref
| Expression |
| 1 | | usgruspgr 15938 |
. . 3
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
USPGraph) |
| 2 | | usgrislfuspgr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | | usgrislfuspgr.i |
. . . . 5
⊢ 𝐼 = (iEdg‘𝐺) |
| 4 | 2, 3 | usgrfen 15915 |
. . . 4
⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 5 | | f1f 5504 |
. . . . 5
⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 6 | | ensym 6898 |
. . . . . . . . 9
⊢ (𝑥 ≈ 2o →
2o ≈ 𝑥) |
| 7 | | endom 6879 |
. . . . . . . . 9
⊢
(2o ≈ 𝑥 → 2o ≼ 𝑥) |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ (𝑥 ≈ 2o →
2o ≼ 𝑥) |
| 9 | 8 | a1i 9 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑉 → (𝑥 ≈ 2o → 2o
≼ 𝑥)) |
| 10 | 9 | ss2rabi 3284 |
. . . . . 6
⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥} |
| 11 | 10 | a1i 9 |
. . . . 5
⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥}) |
| 12 | 5, 11 | fssd 5459 |
. . . 4
⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 13 | 4, 12 | syl 14 |
. . 3
⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 14 | 1, 13 | jca 306 |
. 2
⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| 15 | 2, 3 | uspgrfen 15914 |
. . . 4
⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}) |
| 16 | | df-f1 5296 |
. . . . . 6
⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔
(𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
Fun ◡𝐼)) |
| 17 | | fin 5485 |
. . . . . . . . . . 11
⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩
{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| 18 | | umgrislfupgrenlem 15885 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩
{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} |
| 19 | | feq3 5431 |
. . . . . . . . . . . 12
⊢ (({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩
{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩
{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩
{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼
𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 21 | 17, 20 | sylbb1 137 |
. . . . . . . . . 10
⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 22 | 21 | anim1i 340 |
. . . . . . . . 9
⊢ (((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ∧ Fun ◡𝐼) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ∧ Fun ◡𝐼)) |
| 23 | | df-f1 5296 |
. . . . . . . . 9
⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ∧ Fun ◡𝐼)) |
| 24 | 22, 23 | sylibr 134 |
. . . . . . . 8
⊢ (((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ∧ Fun ◡𝐼) → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 25 | 24 | ex 115 |
. . . . . . 7
⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → (Fun ◡𝐼 → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 26 | 25 | impancom 260 |
. . . . . 6
⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
Fun ◡𝐼) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 27 | 16, 26 | sylbi 121 |
. . . . 5
⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
(𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 28 | 27 | imp 124 |
. . . 4
⊢ ((𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 29 | 15, 28 | sylan 283 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 30 | 2, 3 | isusgren 15913 |
. . . 4
⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 31 | 30 | adantr 276 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → (𝐺 ∈ USGraph ↔ 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 32 | 29, 31 | mpbird 167 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐺 ∈ USGraph) |
| 33 | 14, 32 | impbii 126 |
1
⊢ (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |