Step | Hyp | Ref
| Expression |
1 | | ssidd 3944 |
. . 3
⊢ (𝐶 ∈ Cat →
(Base‘𝐶) ⊆
(Base‘𝐶)) |
2 | | ssidd 3944 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Homf ‘𝐶)𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)) |
3 | 2 | ralrimivva 3123 |
. . 3
⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Homf ‘𝐶)𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
6 | 4, 5 | homffn 17402 |
. . . . 5
⊢
(Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝐶 ∈ Cat →
(Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
8 | | fvexd 6789 |
. . . 4
⊢ (𝐶 ∈ Cat →
(Base‘𝐶) ∈
V) |
9 | 7, 7, 8 | isssc 17532 |
. . 3
⊢ (𝐶 ∈ Cat →
((Homf ‘𝐶) ⊆cat
(Homf ‘𝐶) ↔ ((Base‘𝐶) ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Homf ‘𝐶)𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)))) |
10 | 1, 3, 9 | mpbir2and 710 |
. 2
⊢ (𝐶 ∈ Cat →
(Homf ‘𝐶) ⊆cat
(Homf ‘𝐶)) |
11 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
12 | | eqid 2738 |
. . . . . 6
⊢
(Id‘𝐶) =
(Id‘𝐶) |
13 | | simpl 483 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
14 | | simpr 485 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
15 | 5, 11, 12, 13, 14 | catidcl 17391 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
16 | 4, 5, 11, 14, 14 | homfval 17401 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Homf ‘𝐶)𝑥) = (𝑥(Hom ‘𝐶)𝑥)) |
17 | 15, 16 | eleqtrrd 2842 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf ‘𝐶)𝑥)) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐶) =
(comp‘𝐶) |
19 | 13 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
20 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → 𝐶 ∈ Cat) |
21 | 14 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
23 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
24 | 23 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
25 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
26 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑧 ∈ (Base‘𝐶)) |
27 | 26 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶)) |
28 | 27 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
29 | 4, 5, 11, 21, 24 | homfval 17401 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑥(Homf ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
30 | 29 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
31 | 30 | biimpcd 248 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) → (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
32 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)) → (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
33 | 32 | impcom 408 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
34 | 4, 5, 11, 24, 27 | homfval 17401 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑦(Homf ‘𝐶)𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
35 | 34 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) |
36 | 35 | biimpd 228 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) |
37 | 36 | adantld 491 |
. . . . . . . . 9
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ((𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) |
38 | 37 | imp 407 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
39 | 5, 11, 18, 20, 22, 25, 28, 33, 38 | catcocl 17394 |
. . . . . . 7
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
40 | 4, 5, 11, 21, 27 | homfval 17401 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑥(Homf ‘𝐶)𝑧) = (𝑥(Hom ‘𝐶)𝑧)) |
41 | 40 | adantr 481 |
. . . . . . 7
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → (𝑥(Homf ‘𝐶)𝑧) = (𝑥(Hom ‘𝐶)𝑧)) |
42 | 39, 41 | eleqtrrd 2842 |
. . . . . 6
⊢ ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf ‘𝐶)𝑧)) |
43 | 42 | ralrimivva 3123 |
. . . . 5
⊢ (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf ‘𝐶)𝑧)) |
44 | 43 | ralrimivva 3123 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf ‘𝐶)𝑧)) |
45 | 17, 44 | jca 512 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf ‘𝐶)𝑥) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf ‘𝐶)𝑧))) |
46 | 45 | ralrimiva 3103 |
. 2
⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)(((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf ‘𝐶)𝑥) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf ‘𝐶)𝑧))) |
47 | | id 22 |
. . 3
⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) |
48 | 4, 12, 18, 47, 7 | issubc2 17551 |
. 2
⊢ (𝐶 ∈ Cat →
((Homf ‘𝐶) ∈ (Subcat‘𝐶) ↔ ((Homf
‘𝐶)
⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ (Base‘𝐶)(((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf ‘𝐶)𝑥) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf ‘𝐶)𝑧))))) |
49 | 10, 46, 48 | mpbir2and 710 |
1
⊢ (𝐶 ∈ Cat →
(Homf ‘𝐶) ∈ (Subcat‘𝐶)) |