MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catsubcat Structured version   Visualization version   GIF version

Theorem catsubcat 17801
Description: For any category 𝐶, 𝐶 itself is a (full) subcategory of 𝐶, see example 4.3(1.b) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
catsubcat (𝐶 ∈ Cat → (Homf𝐶) ∈ (Subcat‘𝐶))

Proof of Theorem catsubcat
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3970 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) ⊆ (Base‘𝐶))
2 ssidd 3970 . . . 4 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Homf𝐶)𝑦) ⊆ (𝑥(Homf𝐶)𝑦))
32ralrimivva 3180 . . 3 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Homf𝐶)𝑦) ⊆ (𝑥(Homf𝐶)𝑦))
4 eqid 2729 . . . . . 6 (Homf𝐶) = (Homf𝐶)
5 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
64, 5homffn 17654 . . . . 5 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
76a1i 11 . . . 4 (𝐶 ∈ Cat → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
8 fvexd 6873 . . . 4 (𝐶 ∈ Cat → (Base‘𝐶) ∈ V)
97, 7, 8isssc 17782 . . 3 (𝐶 ∈ Cat → ((Homf𝐶) ⊆cat (Homf𝐶) ↔ ((Base‘𝐶) ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Homf𝐶)𝑦) ⊆ (𝑥(Homf𝐶)𝑦))))
101, 3, 9mpbir2and 713 . 2 (𝐶 ∈ Cat → (Homf𝐶) ⊆cat (Homf𝐶))
11 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
13 simpl 482 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
14 simpr 484 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
155, 11, 12, 13, 14catidcl 17643 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
164, 5, 11, 14, 14homfval 17653 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Homf𝐶)𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1715, 16eleqtrrd 2831 . . . 4 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf𝐶)𝑥))
18 eqid 2729 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
1913adantr 480 . . . . . . . . 9 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
2019adantr 480 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → 𝐶 ∈ Cat)
2114adantr 480 . . . . . . . . 9 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
2221adantr 480 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
23 simpl 482 . . . . . . . . . 10 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
2423adantl 481 . . . . . . . . 9 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
2524adantr 480 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
26 simpr 484 . . . . . . . . . 10 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑧 ∈ (Base‘𝐶))
2726adantl 481 . . . . . . . . 9 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
2827adantr 480 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
294, 5, 11, 21, 24homfval 17653 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑥(Homf𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
3029eleq2d 2814 . . . . . . . . . . 11 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
3130biimpcd 249 . . . . . . . . . 10 (𝑓 ∈ (𝑥(Homf𝐶)𝑦) → (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
3231adantr 480 . . . . . . . . 9 ((𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧)) → (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
3332impcom 407 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
344, 5, 11, 24, 27homfval 17653 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑦(Homf𝐶)𝑧) = (𝑦(Hom ‘𝐶)𝑧))
3534eleq2d 2814 . . . . . . . . . . 11 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Homf𝐶)𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))
3635biimpd 229 . . . . . . . . . 10 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Homf𝐶)𝑧) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))
3736adantld 490 . . . . . . . . 9 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ((𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))
3837imp 406 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
395, 11, 18, 20, 22, 25, 28, 33, 38catcocl 17646 . . . . . . 7 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
404, 5, 11, 21, 27homfval 17653 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑥(Homf𝐶)𝑧) = (𝑥(Hom ‘𝐶)𝑧))
4140adantr 480 . . . . . . 7 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → (𝑥(Homf𝐶)𝑧) = (𝑥(Hom ‘𝐶)𝑧))
4239, 41eleqtrrd 2831 . . . . . 6 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Homf𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Homf𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf𝐶)𝑧))
4342ralrimivva 3180 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Homf𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf𝐶)𝑧))
4443ralrimivva 3180 . . . 4 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf𝐶)𝑧))
4517, 44jca 511 . . 3 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf𝐶)𝑥) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf𝐶)𝑧)))
4645ralrimiva 3125 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)(((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf𝐶)𝑥) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf𝐶)𝑧)))
47 id 22 . . 3 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
484, 12, 18, 47, 7issubc2 17798 . 2 (𝐶 ∈ Cat → ((Homf𝐶) ∈ (Subcat‘𝐶) ↔ ((Homf𝐶) ⊆cat (Homf𝐶) ∧ ∀𝑥 ∈ (Base‘𝐶)(((Id‘𝐶)‘𝑥) ∈ (𝑥(Homf𝐶)𝑥) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Homf𝐶)𝑦)∀𝑔 ∈ (𝑦(Homf𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Homf𝐶)𝑧)))))
4910, 46, 48mpbir2and 713 1 (𝐶 ∈ Cat → (Homf𝐶) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  cop 4595   class class class wbr 5107   × cxp 5636   Fn wfn 6506  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Homf chomf 17627  cat cssc 17769  Subcatcsubc 17771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-pm 8802  df-ixp 8871  df-cat 17629  df-cid 17630  df-homf 17631  df-ssc 17772  df-subc 17774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator