MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem1 Structured version   Visualization version   GIF version

Theorem pythagtriplem1 16445
Description: Lemma for pythagtrip 16463. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 11911 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2 nncn 11911 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3 nncn 11911 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4 sqcl 13766 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℂ → (𝑚↑2) ∈ ℂ)
54adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
65sqcld 13790 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2)↑2) ∈ ℂ)
7 2cn 11978 . . . . . . . . . . . . . 14 2 ∈ ℂ
8 sqcl 13766 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (𝑛↑2) ∈ ℂ)
9 mulcl 10886 . . . . . . . . . . . . . . 15 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
104, 8, 9syl2anr 596 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
11 mulcl 10886 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
127, 10, 11sylancr 586 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
136, 12subcld 11262 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) ∈ ℂ)
148adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
1514sqcld 13790 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛↑2)↑2) ∈ ℂ)
16 mulcl 10886 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
1716ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
18 mulcl 10886 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
197, 17, 18sylancr 586 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
2019sqcld 13790 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
2113, 15, 20add32d 11132 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)))
226, 12, 20subadd23d 11284 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))))
23 sqmul 13767 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
247, 17, 23sylancr 586 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
25 sq2 13842 . . . . . . . . . . . . . . . . . . 19 (2↑2) = 4
2625a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2↑2) = 4)
27 sqmul 13767 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2827ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2926, 28oveq12d 7273 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2↑2) · ((𝑚 · 𝑛)↑2)) = (4 · ((𝑚↑2) · (𝑛↑2))))
3024, 29eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = (4 · ((𝑚↑2) · (𝑛↑2))))
3130oveq1d 7270 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
32 4cn 11988 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
33 subdir 11339 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3432, 7, 10, 33mp3an12i 1463 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
35 2p2e4 12038 . . . . . . . . . . . . . . . . . 18 (2 + 2) = 4
3632, 7, 7, 35subaddrii 11240 . . . . . . . . . . . . . . . . 17 (4 − 2) = 2
3736oveq1i 7265 . . . . . . . . . . . . . . . 16 ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = (2 · ((𝑚↑2) · (𝑛↑2)))
3834, 37eqtr3di 2794 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
3931, 38eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
4039oveq2d 7271 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4122, 40eqtrd 2778 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4241oveq1d 7270 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4321, 42eqtrd 2778 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
44 binom2sub 13863 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
454, 8, 44syl2anr 596 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4645oveq1d 7270 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)))
47 binom2 13861 . . . . . . . . . . 11 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
484, 8, 47syl2anr 596 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4943, 46, 483eqtr4d 2788 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
50493adant3 1130 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
5150oveq2d 7271 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
52 simp3 1136 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝑘 ∈ ℂ)
5343ad2ant2 1132 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
5483ad2ant1 1131 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
5553, 54subcld 11262 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) − (𝑛↑2)) ∈ ℂ)
5652, 55sqmuld 13804 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)))
57173adant3 1130 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
587, 57, 18sylancr 586 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
5952, 58sqmuld 13804 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · (2 · (𝑚 · 𝑛)))↑2) = ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2)))
6056, 59oveq12d 7273 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
61 sqcl 13766 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘↑2) ∈ ℂ)
62613ad2ant3 1133 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘↑2) ∈ ℂ)
6355sqcld 13790 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) ∈ ℂ)
6458sqcld 13790 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
6562, 63, 64adddid 10930 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
6660, 65eqtr4d 2781 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))))
6753, 54addcld 10925 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
6852, 67sqmuld 13804 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
6951, 66, 683eqtr4d 2788 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
701, 2, 3, 69syl3an 1158 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
71 oveq1 7262 . . . . . . . 8 (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) → (𝐴↑2) = ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2))
72 oveq1 7262 . . . . . . . 8 (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) → (𝐵↑2) = ((𝑘 · (2 · (𝑚 · 𝑛)))↑2))
7371, 72oveqan12d 7274 . . . . . . 7 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
74733adant3 1130 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
75 oveq1 7262 . . . . . . 7 (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
76753ad2ant3 1133 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
7774, 76eqeq12d 2754 . . . . 5 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2)))
7870, 77syl5ibrcom 246 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
79783expa 1116 . . 3 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8079rexlimdva 3212 . 2 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8180rexlimivv 3220 1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  2c2 11958  4c4 11960  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  pythagtriplem2  16446
  Copyright terms: Public domain W3C validator