MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem1 Structured version   Visualization version   GIF version

Theorem pythagtriplem1 16863
Description: Lemma for pythagtrip 16881. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 12301 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2 nncn 12301 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3 nncn 12301 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4 sqcl 14168 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℂ → (𝑚↑2) ∈ ℂ)
54adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
65sqcld 14194 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2)↑2) ∈ ℂ)
7 2cn 12368 . . . . . . . . . . . . . 14 2 ∈ ℂ
8 sqcl 14168 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (𝑛↑2) ∈ ℂ)
9 mulcl 11268 . . . . . . . . . . . . . . 15 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
104, 8, 9syl2anr 596 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
11 mulcl 11268 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
127, 10, 11sylancr 586 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
136, 12subcld 11647 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) ∈ ℂ)
148adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
1514sqcld 14194 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛↑2)↑2) ∈ ℂ)
16 mulcl 11268 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
1716ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
18 mulcl 11268 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
197, 17, 18sylancr 586 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
2019sqcld 14194 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
2113, 15, 20add32d 11517 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)))
226, 12, 20subadd23d 11669 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))))
23 sqmul 14169 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
247, 17, 23sylancr 586 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
25 sq2 14246 . . . . . . . . . . . . . . . . . . 19 (2↑2) = 4
2625a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2↑2) = 4)
27 sqmul 14169 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2827ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2926, 28oveq12d 7466 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2↑2) · ((𝑚 · 𝑛)↑2)) = (4 · ((𝑚↑2) · (𝑛↑2))))
3024, 29eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = (4 · ((𝑚↑2) · (𝑛↑2))))
3130oveq1d 7463 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
32 4cn 12378 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
33 subdir 11724 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3432, 7, 10, 33mp3an12i 1465 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
35 2p2e4 12428 . . . . . . . . . . . . . . . . . 18 (2 + 2) = 4
3632, 7, 7, 35subaddrii 11625 . . . . . . . . . . . . . . . . 17 (4 − 2) = 2
3736oveq1i 7458 . . . . . . . . . . . . . . . 16 ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = (2 · ((𝑚↑2) · (𝑛↑2)))
3834, 37eqtr3di 2795 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
3931, 38eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
4039oveq2d 7464 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4122, 40eqtrd 2780 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4241oveq1d 7463 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4321, 42eqtrd 2780 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
44 binom2sub 14269 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
454, 8, 44syl2anr 596 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4645oveq1d 7463 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)))
47 binom2 14266 . . . . . . . . . . 11 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
484, 8, 47syl2anr 596 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4943, 46, 483eqtr4d 2790 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
50493adant3 1132 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
5150oveq2d 7464 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
52 simp3 1138 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝑘 ∈ ℂ)
5343ad2ant2 1134 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
5483ad2ant1 1133 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
5553, 54subcld 11647 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) − (𝑛↑2)) ∈ ℂ)
5652, 55sqmuld 14208 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)))
57173adant3 1132 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
587, 57, 18sylancr 586 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
5952, 58sqmuld 14208 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · (2 · (𝑚 · 𝑛)))↑2) = ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2)))
6056, 59oveq12d 7466 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
61 sqcl 14168 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘↑2) ∈ ℂ)
62613ad2ant3 1135 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘↑2) ∈ ℂ)
6355sqcld 14194 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) ∈ ℂ)
6458sqcld 14194 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
6562, 63, 64adddid 11314 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
6660, 65eqtr4d 2783 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))))
6753, 54addcld 11309 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
6852, 67sqmuld 14208 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
6951, 66, 683eqtr4d 2790 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
701, 2, 3, 69syl3an 1160 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
71 oveq1 7455 . . . . . . . 8 (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) → (𝐴↑2) = ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2))
72 oveq1 7455 . . . . . . . 8 (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) → (𝐵↑2) = ((𝑘 · (2 · (𝑚 · 𝑛)))↑2))
7371, 72oveqan12d 7467 . . . . . . 7 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
74733adant3 1132 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
75 oveq1 7455 . . . . . . 7 (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
76753ad2ant3 1135 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
7774, 76eqeq12d 2756 . . . . 5 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2)))
7870, 77syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
79783expa 1118 . . 3 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8079rexlimdva 3161 . 2 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8180rexlimivv 3207 1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  cmin 11520  cn 12293  2c2 12348  4c4 12350  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  pythagtriplem2  16864
  Copyright terms: Public domain W3C validator