MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem1 Structured version   Visualization version   GIF version

Theorem pythagtriplem1 15800
Description: Lemma for pythagtrip 15818. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 11283 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2 nncn 11283 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3 nncn 11283 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4 sqcl 13132 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℂ → (𝑚↑2) ∈ ℂ)
54adantl 473 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
65sqcld 13213 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2)↑2) ∈ ℂ)
7 2cn 11347 . . . . . . . . . . . . . 14 2 ∈ ℂ
8 sqcl 13132 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (𝑛↑2) ∈ ℂ)
9 mulcl 10273 . . . . . . . . . . . . . . 15 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
104, 8, 9syl2anr 590 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
11 mulcl 10273 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
127, 10, 11sylancr 581 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
136, 12subcld 10646 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) ∈ ℂ)
148adantr 472 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
1514sqcld 13213 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛↑2)↑2) ∈ ℂ)
16 mulcl 10273 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
1716ancoms 450 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
18 mulcl 10273 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
197, 17, 18sylancr 581 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
2019sqcld 13213 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
2113, 15, 20add32d 10517 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)))
226, 12, 20subadd23d 10668 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))))
23 sqmul 13133 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
247, 17, 23sylancr 581 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
25 sq2 13167 . . . . . . . . . . . . . . . . . . 19 (2↑2) = 4
2625a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2↑2) = 4)
27 sqmul 13133 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2827ancoms 450 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2926, 28oveq12d 6860 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2↑2) · ((𝑚 · 𝑛)↑2)) = (4 · ((𝑚↑2) · (𝑛↑2))))
3024, 29eqtrd 2799 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = (4 · ((𝑚↑2) · (𝑛↑2))))
3130oveq1d 6857 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
32 4cn 11358 . . . . . . . . . . . . . . . . . 18 4 ∈ ℂ
33 2p2e4 11414 . . . . . . . . . . . . . . . . . 18 (2 + 2) = 4
3432, 7, 7, 33subaddrii 10624 . . . . . . . . . . . . . . . . 17 (4 − 2) = 2
3534oveq1i 6852 . . . . . . . . . . . . . . . 16 ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = (2 · ((𝑚↑2) · (𝑛↑2)))
36 subdir 10718 . . . . . . . . . . . . . . . . . 18 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3732, 7, 36mp3an12 1575 . . . . . . . . . . . . . . . . 17 (((𝑚↑2) · (𝑛↑2)) ∈ ℂ → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3810, 37syl 17 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3935, 38syl5reqr 2814 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
4031, 39eqtrd 2799 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
4140oveq2d 6858 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4222, 41eqtrd 2799 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4342oveq1d 6857 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4421, 43eqtrd 2799 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
45 binom2sub 13188 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
464, 8, 45syl2anr 590 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4746oveq1d 6857 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)))
48 binom2 13186 . . . . . . . . . . 11 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
494, 8, 48syl2anr 590 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
5044, 47, 493eqtr4d 2809 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
51503adant3 1162 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
5251oveq2d 6858 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
53 simp3 1168 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝑘 ∈ ℂ)
5443ad2ant2 1164 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
5583ad2ant1 1163 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
5654, 55subcld 10646 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) − (𝑛↑2)) ∈ ℂ)
5753, 56sqmuld 13227 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)))
58173adant3 1162 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
597, 58, 18sylancr 581 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
6053, 59sqmuld 13227 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · (2 · (𝑚 · 𝑛)))↑2) = ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2)))
6157, 60oveq12d 6860 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
62 sqcl 13132 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘↑2) ∈ ℂ)
63623ad2ant3 1165 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘↑2) ∈ ℂ)
6456sqcld 13213 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) ∈ ℂ)
6559sqcld 13213 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
6663, 64, 65adddid 10318 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
6761, 66eqtr4d 2802 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))))
6854, 55addcld 10313 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
6953, 68sqmuld 13227 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
7052, 67, 693eqtr4d 2809 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
711, 2, 3, 70syl3an 1199 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
72 oveq1 6849 . . . . . . . 8 (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) → (𝐴↑2) = ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2))
73 oveq1 6849 . . . . . . . 8 (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) → (𝐵↑2) = ((𝑘 · (2 · (𝑚 · 𝑛)))↑2))
7472, 73oveqan12d 6861 . . . . . . 7 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
75743adant3 1162 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
76 oveq1 6849 . . . . . . 7 (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
77763ad2ant3 1165 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
7875, 77eqeq12d 2780 . . . . 5 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2)))
7971, 78syl5ibrcom 238 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
80793expa 1147 . . 3 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8180rexlimdva 3178 . 2 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8281rexlimivv 3183 1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  (class class class)co 6842  cc 10187   + caddc 10192   · cmul 10194  cmin 10520  cn 11274  2c2 11327  4c4 11329  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-seq 13009  df-exp 13068
This theorem is referenced by:  pythagtriplem2  15801
  Copyright terms: Public domain W3C validator