![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclmi0 | Structured version Visualization version GIF version |
Description: Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
Ref | Expression |
---|---|
isclmp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
isclmp.a | ⊢ + = (+g‘𝑊) |
isclmp.v | ⊢ 𝑉 = (Base‘𝑊) |
isclmp.s | ⊢ 𝑆 = (Scalar‘𝑊) |
isclmp.k | ⊢ 𝐾 = (Base‘𝑆) |
isclmi0.1 | ⊢ 𝑆 = (ℂfld ↾s 𝐾) |
isclmi0.2 | ⊢ 𝑊 ∈ Grp |
isclmi0.3 | ⊢ 𝐾 ∈ (SubRing‘ℂfld) |
isclmi0.4 | ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) |
isclmi0.5 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) |
isclmi0.6 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
isclmi0.7 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) |
isclmi0.8 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) |
Ref | Expression |
---|---|
isclmi0 | ⊢ 𝑊 ∈ ℂMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclmi0.2 | . . 3 ⊢ 𝑊 ∈ Grp | |
2 | isclmi0.1 | . . 3 ⊢ 𝑆 = (ℂfld ↾s 𝐾) | |
3 | isclmi0.3 | . . 3 ⊢ 𝐾 ∈ (SubRing‘ℂfld) | |
4 | 1, 2, 3 | 3pm3.2i 1395 | . 2 ⊢ (𝑊 ∈ Grp ∧ 𝑆 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) |
5 | isclmi0.4 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) | |
6 | isclmi0.5 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) | |
7 | 6 | ancoms 452 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝑦 · 𝑥) ∈ 𝑉) |
8 | isclmi0.6 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) | |
9 | 8 | 3com12 1114 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
10 | 9 | 3expa 1108 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
11 | 10 | ralrimiva 3148 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
12 | isclmi0.7 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) | |
13 | isclmi0.8 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) | |
14 | 12, 13 | jca 507 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
15 | 14 | 3comr 1116 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
16 | 15 | 3expa 1108 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
17 | 16 | ralrimiva 3148 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
18 | 7, 11, 17 | 3jca 1119 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
19 | 18 | ralrimiva 3148 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
20 | 5, 19 | jca 507 | . . 3 ⊢ (𝑥 ∈ 𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) |
21 | 20 | rgen 3104 | . 2 ⊢ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
22 | isclmp.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
23 | isclmp.a | . . 3 ⊢ + = (+g‘𝑊) | |
24 | isclmp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
25 | isclmp.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑊) | |
26 | isclmp.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
27 | 22, 23, 24, 25, 26 | isclmp 23308 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
28 | 4, 21, 27 | mpbir2an 701 | 1 ⊢ 𝑊 ∈ ℂMod |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ‘cfv 6137 (class class class)co 6924 1c1 10275 + caddc 10277 · cmul 10279 Basecbs 16259 ↾s cress 16260 +gcplusg 16342 Scalarcsca 16345 ·𝑠 cvsca 16346 Grpcgrp 17813 SubRingcsubrg 19172 ℂfldccnfld 20146 ℂModcclm 23273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-fz 12648 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-0g 16492 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-grp 17816 df-subg 17979 df-cmn 18585 df-mgp 18881 df-ur 18893 df-ring 18940 df-cring 18941 df-subrg 19174 df-lmod 19261 df-cnfld 20147 df-clm 23274 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |