Step | Hyp | Ref
| Expression |
1 | | isclmi0.2 |
. . 3
β’ π β Grp |
2 | | isclmi0.1 |
. . 3
β’ π = (βfld
βΎs πΎ) |
3 | | isclmi0.3 |
. . 3
β’ πΎ β
(SubRingββfld) |
4 | 1, 2, 3 | 3pm3.2i 1338 |
. 2
β’ (π β Grp β§ π = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)) |
5 | | isclmi0.4 |
. . . 4
β’ (π₯ β π β (1 Β· π₯) = π₯) |
6 | | isclmi0.5 |
. . . . . . 7
β’ ((π¦ β πΎ β§ π₯ β π) β (π¦ Β· π₯) β π) |
7 | 6 | ancoms 458 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β πΎ) β (π¦ Β· π₯) β π) |
8 | | isclmi0.6 |
. . . . . . . . 9
β’ ((π¦ β πΎ β§ π₯ β π β§ π§ β π) β (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§))) |
9 | 8 | 3com12 1122 |
. . . . . . . 8
β’ ((π₯ β π β§ π¦ β πΎ β§ π§ β π) β (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§))) |
10 | 9 | 3expa 1117 |
. . . . . . 7
β’ (((π₯ β π β§ π¦ β πΎ) β§ π§ β π) β (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§))) |
11 | 10 | ralrimiva 3145 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β πΎ) β βπ§ β π (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§))) |
12 | | isclmi0.7 |
. . . . . . . . . 10
β’ ((π¦ β πΎ β§ π§ β πΎ β§ π₯ β π) β ((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯))) |
13 | | isclmi0.8 |
. . . . . . . . . 10
β’ ((π¦ β πΎ β§ π§ β πΎ β§ π₯ β π) β ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯))) |
14 | 12, 13 | jca 511 |
. . . . . . . . 9
β’ ((π¦ β πΎ β§ π§ β πΎ β§ π₯ β π) β (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯)))) |
15 | 14 | 3comr 1124 |
. . . . . . . 8
β’ ((π₯ β π β§ π¦ β πΎ β§ π§ β πΎ) β (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯)))) |
16 | 15 | 3expa 1117 |
. . . . . . 7
β’ (((π₯ β π β§ π¦ β πΎ) β§ π§ β πΎ) β (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯)))) |
17 | 16 | ralrimiva 3145 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β πΎ) β βπ§ β πΎ (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯)))) |
18 | 7, 11, 17 | 3jca 1127 |
. . . . 5
β’ ((π₯ β π β§ π¦ β πΎ) β ((π¦ Β· π₯) β π β§ βπ§ β π (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§)) β§ βπ§ β πΎ (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯))))) |
19 | 18 | ralrimiva 3145 |
. . . 4
β’ (π₯ β π β βπ¦ β πΎ ((π¦ Β· π₯) β π β§ βπ§ β π (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§)) β§ βπ§ β πΎ (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯))))) |
20 | 5, 19 | jca 511 |
. . 3
β’ (π₯ β π β ((1 Β· π₯) = π₯ β§ βπ¦ β πΎ ((π¦ Β· π₯) β π β§ βπ§ β π (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§)) β§ βπ§ β πΎ (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯)))))) |
21 | 20 | rgen 3062 |
. 2
β’
βπ₯ β
π ((1 Β· π₯) = π₯ β§ βπ¦ β πΎ ((π¦ Β· π₯) β π β§ βπ§ β π (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§)) β§ βπ§ β πΎ (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯))))) |
22 | | isclmp.t |
. . 3
β’ Β· = (
Β·π βπ) |
23 | | isclmp.a |
. . 3
β’ + =
(+gβπ) |
24 | | isclmp.v |
. . 3
β’ π = (Baseβπ) |
25 | | isclmp.s |
. . 3
β’ π = (Scalarβπ) |
26 | | isclmp.k |
. . 3
β’ πΎ = (Baseβπ) |
27 | 22, 23, 24, 25, 26 | isclmp 24845 |
. 2
β’ (π β βMod β
((π β Grp β§ π = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)) β§ βπ₯ β π ((1 Β· π₯) = π₯ β§ βπ¦ β πΎ ((π¦ Β· π₯) β π β§ βπ§ β π (π¦ Β· (π₯ + π§)) = ((π¦ Β· π₯) + (π¦ Β· π§)) β§ βπ§ β πΎ (((π§ + π¦) Β· π₯) = ((π§ Β· π₯) + (π¦ Β· π₯)) β§ ((π§ Β· π¦) Β· π₯) = (π§ Β· (π¦ Β· π₯))))))) |
28 | 4, 21, 27 | mpbir2an 708 |
1
β’ π β
βMod |