Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isclmi0 | Structured version Visualization version GIF version |
Description: Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
Ref | Expression |
---|---|
isclmp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
isclmp.a | ⊢ + = (+g‘𝑊) |
isclmp.v | ⊢ 𝑉 = (Base‘𝑊) |
isclmp.s | ⊢ 𝑆 = (Scalar‘𝑊) |
isclmp.k | ⊢ 𝐾 = (Base‘𝑆) |
isclmi0.1 | ⊢ 𝑆 = (ℂfld ↾s 𝐾) |
isclmi0.2 | ⊢ 𝑊 ∈ Grp |
isclmi0.3 | ⊢ 𝐾 ∈ (SubRing‘ℂfld) |
isclmi0.4 | ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) |
isclmi0.5 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) |
isclmi0.6 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
isclmi0.7 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) |
isclmi0.8 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) |
Ref | Expression |
---|---|
isclmi0 | ⊢ 𝑊 ∈ ℂMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclmi0.2 | . . 3 ⊢ 𝑊 ∈ Grp | |
2 | isclmi0.1 | . . 3 ⊢ 𝑆 = (ℂfld ↾s 𝐾) | |
3 | isclmi0.3 | . . 3 ⊢ 𝐾 ∈ (SubRing‘ℂfld) | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ (𝑊 ∈ Grp ∧ 𝑆 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) |
5 | isclmi0.4 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) | |
6 | isclmi0.5 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) | |
7 | 6 | ancoms 460 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝑦 · 𝑥) ∈ 𝑉) |
8 | isclmi0.6 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) | |
9 | 8 | 3com12 1123 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
10 | 9 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
11 | 10 | ralrimiva 3140 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
12 | isclmi0.7 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) | |
13 | isclmi0.8 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) | |
14 | 12, 13 | jca 513 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
15 | 14 | 3comr 1125 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
16 | 15 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
17 | 16 | ralrimiva 3140 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
18 | 7, 11, 17 | 3jca 1128 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
19 | 18 | ralrimiva 3140 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
20 | 5, 19 | jca 513 | . . 3 ⊢ (𝑥 ∈ 𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) |
21 | 20 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
22 | isclmp.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
23 | isclmp.a | . . 3 ⊢ + = (+g‘𝑊) | |
24 | isclmp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
25 | isclmp.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑊) | |
26 | isclmp.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
27 | 22, 23, 24, 25, 26 | isclmp 24365 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
28 | 4, 21, 27 | mpbir2an 709 | 1 ⊢ 𝑊 ∈ ℂMod |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ‘cfv 6483 (class class class)co 7341 1c1 10977 + caddc 10979 · cmul 10981 Basecbs 17009 ↾s cress 17038 +gcplusg 17059 Scalarcsca 17062 ·𝑠 cvsca 17063 Grpcgrp 18673 SubRingcsubrg 20124 ℂfldccnfld 20702 ℂModcclm 24330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-fz 13345 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-subg 18848 df-cmn 19483 df-mgp 19815 df-ur 19832 df-ring 19879 df-cring 19880 df-subrg 20126 df-lmod 20230 df-cnfld 20703 df-clm 24331 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |