MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit1 Structured version   Visualization version   GIF version

Theorem digit1 13598
Description: Two ways to express the 𝐾 th digit in the decimal expansion of a number 𝐴 (when base 𝐵 = 10). 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.)
Assertion
Ref Expression
digit1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))

Proof of Theorem digit1
StepHypRef Expression
1 digit2 13597 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
213coml 1124 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
323expa 1115 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
43oveq1d 7154 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)))
5 nnre 11636 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
6 nnnn0 11896 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
7 reexpcl 13446 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
85, 6, 7syl2an 598 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
9 remulcl 10615 . . . . . . . 8 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
108, 9sylan 583 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
11 reflcl 13165 . . . . . . 7 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
13 nnrp 12392 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
1413ad2antrr 725 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ+)
1512, 14modcld 13242 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ)
16 nnexpcl 13442 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℕ)
176, 16sylan2 595 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℕ)
1817nnrpd 12421 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ+)
1918adantr 484 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ+)
20 modge0 13246 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
2112, 14, 20syl2anc 587 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
225ad2antrr 725 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
238adantr 484 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ)
24 modlt 13247 . . . . . . 7 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
2512, 14, 24syl2anc 587 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
26 nncn 11637 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
27 exp1 13435 . . . . . . . . . 10 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵↑1) = 𝐵)
2928adantr 484 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) = 𝐵)
305adantr 484 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ)
31 nnge1 11657 . . . . . . . . . 10 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
3231adantr 484 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 1 ≤ 𝐵)
33 simpr 488 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
34 nnuz 12273 . . . . . . . . . 10 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2903 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ (ℤ‘1))
36 leexp2a 13536 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝐾 ∈ (ℤ‘1)) → (𝐵↑1) ≤ (𝐵𝐾))
3730, 32, 35, 36syl3anc 1368 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) ≤ (𝐵𝐾))
3829, 37eqbrtrrd 5057 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ≤ (𝐵𝐾))
3938adantr 484 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (𝐵𝐾))
4015, 22, 23, 25, 39ltletrd 10793 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))
41 modid 13263 . . . . 5 (((((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) ∧ (0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∧ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
4215, 19, 21, 40, 41syl22anc 837 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
43 simpll 766 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℕ)
44 nnm1nn0 11930 . . . . . . . . 9 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
45 reexpcl 13446 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
465, 44, 45syl2an 598 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
47 remulcl 10615 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
4846, 47sylan 583 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
49 nnexpcl 13442 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5044, 49sylan2 595 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5150adantr 484 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
52 modmulnn 13256 . . . . . . 7 ((𝐵 ∈ ℕ ∧ ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ ∧ (𝐵↑(𝐾 − 1)) ∈ ℕ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
5343, 48, 51, 52syl3anc 1368 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
54 expm1t 13457 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = ((𝐵↑(𝐾 − 1)) · 𝐵))
55 expcl 13447 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
5644, 55sylan2 595 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
57 simpl 486 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℂ)
5856, 57mulcomd 10655 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐵) = (𝐵 · (𝐵↑(𝐾 − 1))))
5954, 58eqtrd 2836 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6026, 59sylan 583 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6160adantr 484 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6261oveq2d 7155 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) = ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
6361oveq1d 7154 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴))
6426ad2antrr 725 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
6526, 44, 55syl2an 598 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
6665adantr 484 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
67 recn 10620 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6867adantl 485 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
6964, 66, 68mulassd 10657 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7063, 69eqtrd 2836 . . . . . . . 8 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7170fveq2d 6653 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) = (⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))))
7271, 61oveq12d 7157 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) = ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
7353, 62, 723brtr4d 5065 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)))
74 reflcl 13165 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
7548, 74syl 17 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
76 remulcl 10615 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
7722, 75, 76syl2anc 587 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
78 modsubdir 13307 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
7912, 77, 19, 78syl3anc 1368 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
8073, 79mpbid 235 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
814, 42, 803eqtr3d 2844 . . 3 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
82813impa 1107 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
83823comr 1122 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   · cmul 10535   < clt 10668  cle 10669  cmin 10863  cn 11629  0cn0 11889  cuz 12235  +crp 12381  cfl 13159   mod cmo 13236  cexp 13429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator