MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit1 Structured version   Visualization version   GIF version

Theorem digit1 14273
Description: Two ways to express the 𝐾 th digit in the decimal expansion of a number 𝐴 (when base 𝐵 = 10). 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.)
Assertion
Ref Expression
digit1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))

Proof of Theorem digit1
StepHypRef Expression
1 digit2 14272 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
213coml 1126 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
323expa 1117 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
43oveq1d 7446 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)))
5 nnre 12271 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
6 nnnn0 12531 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
7 reexpcl 14116 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
85, 6, 7syl2an 596 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
9 remulcl 11238 . . . . . . . 8 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
108, 9sylan 580 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
11 reflcl 13833 . . . . . . 7 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
13 nnrp 13044 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
1413ad2antrr 726 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ+)
1512, 14modcld 13912 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ)
16 nnexpcl 14112 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℕ)
176, 16sylan2 593 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℕ)
1817nnrpd 13073 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ+)
1918adantr 480 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ+)
20 modge0 13916 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
2112, 14, 20syl2anc 584 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
225ad2antrr 726 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
238adantr 480 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ)
24 modlt 13917 . . . . . . 7 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
2512, 14, 24syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
26 nncn 12272 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
27 exp1 14105 . . . . . . . . . 10 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵↑1) = 𝐵)
2928adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) = 𝐵)
305adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ)
31 nnge1 12292 . . . . . . . . . 10 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
3231adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 1 ≤ 𝐵)
33 simpr 484 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
34 nnuz 12919 . . . . . . . . . 10 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2849 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ (ℤ‘1))
36 leexp2a 14209 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝐾 ∈ (ℤ‘1)) → (𝐵↑1) ≤ (𝐵𝐾))
3730, 32, 35, 36syl3anc 1370 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) ≤ (𝐵𝐾))
3829, 37eqbrtrrd 5172 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ≤ (𝐵𝐾))
3938adantr 480 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (𝐵𝐾))
4015, 22, 23, 25, 39ltletrd 11419 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))
41 modid 13933 . . . . 5 (((((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) ∧ (0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∧ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
4215, 19, 21, 40, 41syl22anc 839 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
43 simpll 767 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℕ)
44 nnm1nn0 12565 . . . . . . . . 9 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
45 reexpcl 14116 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
465, 44, 45syl2an 596 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
47 remulcl 11238 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
4846, 47sylan 580 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
49 nnexpcl 14112 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5044, 49sylan2 593 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5150adantr 480 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
52 modmulnn 13926 . . . . . . 7 ((𝐵 ∈ ℕ ∧ ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ ∧ (𝐵↑(𝐾 − 1)) ∈ ℕ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
5343, 48, 51, 52syl3anc 1370 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
54 expm1t 14128 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = ((𝐵↑(𝐾 − 1)) · 𝐵))
55 expcl 14117 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
5644, 55sylan2 593 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
57 simpl 482 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℂ)
5856, 57mulcomd 11280 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐵) = (𝐵 · (𝐵↑(𝐾 − 1))))
5954, 58eqtrd 2775 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6026, 59sylan 580 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6160adantr 480 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6261oveq2d 7447 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) = ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
6361oveq1d 7446 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴))
6426ad2antrr 726 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
6526, 44, 55syl2an 596 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
6665adantr 480 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
67 recn 11243 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6867adantl 481 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
6964, 66, 68mulassd 11282 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7063, 69eqtrd 2775 . . . . . . . 8 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7170fveq2d 6911 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) = (⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))))
7271, 61oveq12d 7449 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) = ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
7353, 62, 723brtr4d 5180 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)))
74 reflcl 13833 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
7548, 74syl 17 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
76 remulcl 11238 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
7722, 75, 76syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
78 modsubdir 13978 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
7912, 77, 19, 78syl3anc 1370 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
8073, 79mpbid 232 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
814, 42, 803eqtr3d 2783 . . 3 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
82813impa 1109 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
83823comr 1124 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294  cmin 11490  cn 12264  0cn0 12524  cuz 12876  +crp 13032  cfl 13827   mod cmo 13906  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator