MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit1 Structured version   Visualization version   GIF version

Theorem digit1 14276
Description: Two ways to express the 𝐾 th digit in the decimal expansion of a number 𝐴 (when base 𝐵 = 10). 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.)
Assertion
Ref Expression
digit1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))

Proof of Theorem digit1
StepHypRef Expression
1 digit2 14275 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
213coml 1128 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
323expa 1119 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
43oveq1d 7446 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)))
5 nnre 12273 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
6 nnnn0 12533 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
7 reexpcl 14119 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
85, 6, 7syl2an 596 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
9 remulcl 11240 . . . . . . . 8 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
108, 9sylan 580 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
11 reflcl 13836 . . . . . . 7 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
13 nnrp 13046 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
1413ad2antrr 726 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ+)
1512, 14modcld 13915 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ)
16 nnexpcl 14115 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℕ)
176, 16sylan2 593 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℕ)
1817nnrpd 13075 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ+)
1918adantr 480 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ+)
20 modge0 13919 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
2112, 14, 20syl2anc 584 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
225ad2antrr 726 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
238adantr 480 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ)
24 modlt 13920 . . . . . . 7 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
2512, 14, 24syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
26 nncn 12274 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
27 exp1 14108 . . . . . . . . . 10 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵↑1) = 𝐵)
2928adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) = 𝐵)
305adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ)
31 nnge1 12294 . . . . . . . . . 10 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
3231adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 1 ≤ 𝐵)
33 simpr 484 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
34 nnuz 12921 . . . . . . . . . 10 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2851 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ (ℤ‘1))
36 leexp2a 14212 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝐾 ∈ (ℤ‘1)) → (𝐵↑1) ≤ (𝐵𝐾))
3730, 32, 35, 36syl3anc 1373 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) ≤ (𝐵𝐾))
3829, 37eqbrtrrd 5167 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ≤ (𝐵𝐾))
3938adantr 480 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (𝐵𝐾))
4015, 22, 23, 25, 39ltletrd 11421 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))
41 modid 13936 . . . . 5 (((((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) ∧ (0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∧ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
4215, 19, 21, 40, 41syl22anc 839 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
43 simpll 767 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℕ)
44 nnm1nn0 12567 . . . . . . . . 9 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
45 reexpcl 14119 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
465, 44, 45syl2an 596 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
47 remulcl 11240 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
4846, 47sylan 580 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
49 nnexpcl 14115 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5044, 49sylan2 593 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5150adantr 480 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
52 modmulnn 13929 . . . . . . 7 ((𝐵 ∈ ℕ ∧ ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ ∧ (𝐵↑(𝐾 − 1)) ∈ ℕ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
5343, 48, 51, 52syl3anc 1373 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
54 expm1t 14131 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = ((𝐵↑(𝐾 − 1)) · 𝐵))
55 expcl 14120 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
5644, 55sylan2 593 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
57 simpl 482 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℂ)
5856, 57mulcomd 11282 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐵) = (𝐵 · (𝐵↑(𝐾 − 1))))
5954, 58eqtrd 2777 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6026, 59sylan 580 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6160adantr 480 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6261oveq2d 7447 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) = ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
6361oveq1d 7446 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴))
6426ad2antrr 726 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
6526, 44, 55syl2an 596 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
6665adantr 480 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
67 recn 11245 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6867adantl 481 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
6964, 66, 68mulassd 11284 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7063, 69eqtrd 2777 . . . . . . . 8 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7170fveq2d 6910 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) = (⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))))
7271, 61oveq12d 7449 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) = ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
7353, 62, 723brtr4d 5175 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)))
74 reflcl 13836 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
7548, 74syl 17 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
76 remulcl 11240 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
7722, 75, 76syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
78 modsubdir 13981 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
7912, 77, 19, 78syl3anc 1373 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
8073, 79mpbid 232 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
814, 42, 803eqtr3d 2785 . . 3 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
82813impa 1110 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
83823comr 1126 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cuz 12878  +crp 13034  cfl 13830   mod cmo 13909  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator