MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit1 Structured version   Visualization version   GIF version

Theorem digit1 13586
Description: Two ways to express the 𝐾 th digit in the decimal expansion of a number 𝐴 (when base 𝐵 = 10). 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.)
Assertion
Ref Expression
digit1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))

Proof of Theorem digit1
StepHypRef Expression
1 digit2 13585 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
213coml 1119 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
323expa 1110 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
43oveq1d 7160 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)))
5 nnre 11633 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
6 nnnn0 11892 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
7 reexpcl 13434 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
85, 6, 7syl2an 595 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
9 remulcl 10610 . . . . . . . 8 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
108, 9sylan 580 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
11 reflcl 13154 . . . . . . 7 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
13 nnrp 12388 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
1413ad2antrr 722 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ+)
1512, 14modcld 13231 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ)
16 nnexpcl 13430 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℕ)
176, 16sylan2 592 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℕ)
1817nnrpd 12417 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ+)
1918adantr 481 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ+)
20 modge0 13235 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
2112, 14, 20syl2anc 584 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
225ad2antrr 722 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
238adantr 481 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ)
24 modlt 13236 . . . . . . 7 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
2512, 14, 24syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
26 nncn 11634 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
27 exp1 13423 . . . . . . . . . 10 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵↑1) = 𝐵)
2928adantr 481 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) = 𝐵)
305adantr 481 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ)
31 nnge1 11653 . . . . . . . . . 10 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
3231adantr 481 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 1 ≤ 𝐵)
33 simpr 485 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
34 nnuz 12269 . . . . . . . . . 10 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2920 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ (ℤ‘1))
36 leexp2a 13524 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝐾 ∈ (ℤ‘1)) → (𝐵↑1) ≤ (𝐵𝐾))
3730, 32, 35, 36syl3anc 1363 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) ≤ (𝐵𝐾))
3829, 37eqbrtrrd 5081 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ≤ (𝐵𝐾))
3938adantr 481 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (𝐵𝐾))
4015, 22, 23, 25, 39ltletrd 10788 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))
41 modid 13252 . . . . 5 (((((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) ∧ (0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∧ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
4215, 19, 21, 40, 41syl22anc 834 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
43 simpll 763 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℕ)
44 nnm1nn0 11926 . . . . . . . . 9 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
45 reexpcl 13434 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
465, 44, 45syl2an 595 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
47 remulcl 10610 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
4846, 47sylan 580 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
49 nnexpcl 13430 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5044, 49sylan2 592 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5150adantr 481 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
52 modmulnn 13245 . . . . . . 7 ((𝐵 ∈ ℕ ∧ ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ ∧ (𝐵↑(𝐾 − 1)) ∈ ℕ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
5343, 48, 51, 52syl3anc 1363 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
54 expm1t 13445 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = ((𝐵↑(𝐾 − 1)) · 𝐵))
55 expcl 13435 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
5644, 55sylan2 592 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
57 simpl 483 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℂ)
5856, 57mulcomd 10650 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐵) = (𝐵 · (𝐵↑(𝐾 − 1))))
5954, 58eqtrd 2853 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6026, 59sylan 580 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6160adantr 481 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6261oveq2d 7161 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) = ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
6361oveq1d 7160 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴))
6426ad2antrr 722 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
6526, 44, 55syl2an 595 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
6665adantr 481 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
67 recn 10615 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6867adantl 482 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
6964, 66, 68mulassd 10652 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7063, 69eqtrd 2853 . . . . . . . 8 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7170fveq2d 6667 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) = (⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))))
7271, 61oveq12d 7163 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) = ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
7353, 62, 723brtr4d 5089 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)))
74 reflcl 13154 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
7548, 74syl 17 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
76 remulcl 10610 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
7722, 75, 76syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
78 modsubdir 13296 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
7912, 77, 19, 78syl3anc 1363 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
8073, 79mpbid 233 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
814, 42, 803eqtr3d 2861 . . 3 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
82813impa 1102 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
83823comr 1117 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663  cle 10664  cmin 10858  cn 11626  0cn0 11885  cuz 12231  +crp 12377  cfl 13148   mod cmo 13225  cexp 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator