Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarperm Structured version   Visualization version   GIF version

Theorem sigarperm 46781
Description: Signed area (𝐴𝐶)𝐺(𝐵𝐶) acts as a double area of a triangle 𝐴𝐵𝐶. Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarperm ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarperm
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
2 simp3 1138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3 sigar . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
43sigarim 46772 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) ∈ ℝ)
54recnd 11318 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) ∈ ℂ)
61, 2, 5syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) ∈ ℂ)
7 simp1 1136 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
83sigarim 46772 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ)
98recnd 11318 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ)
101, 7, 9syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ)
116, 10negsubd 11653 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) + -(𝐵𝐺𝐴)) = ((𝐵𝐺𝐶) − (𝐵𝐺𝐴)))
123sigarac 46773 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
137, 1, 12syl2anc 583 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
1413eqcomd 2746 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐵𝐺𝐴) = (𝐴𝐺𝐵))
1514oveq2d 7464 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) + -(𝐵𝐺𝐴)) = ((𝐵𝐺𝐶) + (𝐴𝐺𝐵)))
1611, 15eqtr3d 2782 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) = ((𝐵𝐺𝐶) + (𝐴𝐺𝐵)))
1716oveq1d 7463 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) − (𝐴𝐺𝐶)) = (((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) − (𝐴𝐺𝐶)))
183sigarexp 46780 . . 3 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) − (𝐴𝐺𝐶)))
19183comr 1125 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) − (𝐴𝐺𝐶)))
203sigarexp 46780 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵)))
213sigarim 46772 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ)
227, 1, 21syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ)
2322recnd 11318 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℂ)
243sigarim 46772 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) ∈ ℝ)
257, 2, 24syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) ∈ ℝ)
2625recnd 11318 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) ∈ ℂ)
273sigarim 46772 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) ∈ ℝ)
282, 1, 27syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) ∈ ℝ)
2928recnd 11318 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) ∈ ℂ)
3023, 26, 29sub32d 11679 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵)) = (((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) − (𝐴𝐺𝐶)))
316, 23addcomd 11492 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) = ((𝐴𝐺𝐵) + (𝐵𝐺𝐶)))
323sigarac 46773 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) = -(𝐶𝐺𝐵))
331, 2, 32syl2anc 583 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) = -(𝐶𝐺𝐵))
3433eqcomd 2746 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐶𝐺𝐵) = (𝐵𝐺𝐶))
3534oveq2d 7464 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + -(𝐶𝐺𝐵)) = ((𝐴𝐺𝐵) + (𝐵𝐺𝐶)))
3623, 29negsubd 11653 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + -(𝐶𝐺𝐵)) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)))
3731, 35, 363eqtr2rd 2787 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) = ((𝐵𝐺𝐶) + (𝐴𝐺𝐵)))
3837oveq1d 7463 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) − (𝐴𝐺𝐶)) = (((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) − (𝐴𝐺𝐶)))
3920, 30, 383eqtrd 2784 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = (((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) − (𝐴𝐺𝐶)))
4017, 19, 393eqtr4rd 2791 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cmpo 7450  cc 11182  cr 11183   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  ccj 15145  cim 15147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150
This theorem is referenced by:  sigarcol  46785  sharhght  46786  sigaradd  46787  cevathlem2  46789
  Copyright terms: Public domain W3C validator