Proof of Theorem sigarperm
Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈
ℂ) |
2 | | simp3 1136 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈
ℂ) |
3 | | sigar |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦
(ℑ‘((∗‘𝑥) · 𝑦))) |
4 | 3 | sigarim 44407 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) ∈ ℝ) |
5 | 4 | recnd 11031 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) ∈ ℂ) |
6 | 1, 2, 5 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) ∈ ℂ) |
7 | | simp1 1134 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈
ℂ) |
8 | 3 | sigarim 44407 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ) |
9 | 8 | recnd 11031 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ) |
10 | 1, 7, 9 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ) |
11 | 6, 10 | negsubd 11366 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) + -(𝐵𝐺𝐴)) = ((𝐵𝐺𝐶) − (𝐵𝐺𝐴))) |
12 | 3 | sigarac 44408 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
13 | 7, 1, 12 | syl2anc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
14 | 13 | eqcomd 2739 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐵𝐺𝐴) = (𝐴𝐺𝐵)) |
15 | 14 | oveq2d 7311 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) + -(𝐵𝐺𝐴)) = ((𝐵𝐺𝐶) + (𝐴𝐺𝐵))) |
16 | 11, 15 | eqtr3d 2775 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) = ((𝐵𝐺𝐶) + (𝐴𝐺𝐵))) |
17 | 16 | oveq1d 7310 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) − (𝐴𝐺𝐶)) = (((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) − (𝐴𝐺𝐶))) |
18 | 3 | sigarexp 44415 |
. . 3
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) − (𝐴𝐺𝐶))) |
19 | 18 | 3comr 1123 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (((𝐵𝐺𝐶) − (𝐵𝐺𝐴)) − (𝐴𝐺𝐶))) |
20 | 3 | sigarexp 44415 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵))) |
21 | 3 | sigarim 44407 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ) |
22 | 7, 1, 21 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ) |
23 | 22 | recnd 11031 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℂ) |
24 | 3 | sigarim 44407 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) ∈ ℝ) |
25 | 7, 2, 24 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) ∈ ℝ) |
26 | 25 | recnd 11031 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) ∈ ℂ) |
27 | 3 | sigarim 44407 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) ∈ ℝ) |
28 | 2, 1, 27 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) ∈ ℝ) |
29 | 28 | recnd 11031 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) ∈ ℂ) |
30 | 23, 26, 29 | sub32d 11392 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵)) = (((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) − (𝐴𝐺𝐶))) |
31 | 6, 23 | addcomd 11205 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) = ((𝐴𝐺𝐵) + (𝐵𝐺𝐶))) |
32 | 3 | sigarac 44408 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) = -(𝐶𝐺𝐵)) |
33 | 1, 2, 32 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐶) = -(𝐶𝐺𝐵)) |
34 | 33 | eqcomd 2739 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐶𝐺𝐵) = (𝐵𝐺𝐶)) |
35 | 34 | oveq2d 7311 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + -(𝐶𝐺𝐵)) = ((𝐴𝐺𝐵) + (𝐵𝐺𝐶))) |
36 | 23, 29 | negsubd 11366 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + -(𝐶𝐺𝐵)) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵))) |
37 | 31, 35, 36 | 3eqtr2rd 2780 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) = ((𝐵𝐺𝐶) + (𝐴𝐺𝐵))) |
38 | 37 | oveq1d 7310 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) − (𝐴𝐺𝐶)) = (((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) − (𝐴𝐺𝐶))) |
39 | 20, 30, 38 | 3eqtrd 2777 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = (((𝐵𝐺𝐶) + (𝐴𝐺𝐵)) − (𝐴𝐺𝐶))) |
40 | 17, 19, 39 | 3eqtr4rd 2784 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴))) |