![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oaord3 | Structured version Visualization version GIF version |
Description: When the same ordinal is added on the left, ordering of the sums is equivalent to the ordering of the ordinals on the right. Theorem 3.7 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oaord3 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaord 8578 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | |
2 | 1 | 3comr 1123 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1085 ∈ wcel 2104 Oncon0 6380 (class class class)co 7425 +o coa 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-ov 7428 df-oprab 7429 df-mpo 7430 df-om 7881 df-2nd 8008 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-oadd 8503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |