MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Structured version   Visualization version   GIF version

Theorem nmooge0 28458
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooge0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))

Proof of Theorem nmooge0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10677 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ∈ ℝ*)
3 simp2 1131 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 𝑊 ∈ NrmCVec)
4 nmoxr.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 eqid 2826 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
64, 5nvzcl 28325 . . . . . . 7 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
7 ffvelrn 6845 . . . . . . 7 ((𝑇:𝑋𝑌 ∧ (0vec𝑈) ∈ 𝑋) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
86, 7sylan2 592 . . . . . 6 ((𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
98ancoms 459 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
1093adant2 1125 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
11 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
12 eqid 2826 . . . . 5 (normCV𝑊) = (normCV𝑊)
1311, 12nvcl 28352 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
143, 10, 13syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
1514rexrd 10680 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ*)
16 nmoxr.3 . . 3 𝑁 = (𝑈 normOpOLD 𝑊)
174, 11, 16nmoxr 28457 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
1811, 12nvge0 28364 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
193, 10, 18syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
2011, 12nmosetre 28455 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
21 ressxr 10674 . . . . . . 7 ℝ ⊆ ℝ*
2220, 21syl6ss 3983 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ*)
23 eqid 2826 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
244, 5, 23nmosetn0 28456 . . . . . 6 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
25 supxrub 12707 . . . . . 6 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ* ∧ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
2622, 24, 25syl2an 595 . . . . 5 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
27263impa 1104 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
28273comr 1119 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
294, 11, 23, 12, 16nmooval 28454 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
3028, 29breqtrrd 5091 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ (𝑁𝑇))
312, 15, 17, 19, 30xrletrd 12545 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  {cab 2804  wrex 3144  wss 3940   class class class wbr 5063  wf 6348  cfv 6352  (class class class)co 7148  supcsup 8893  cr 10525  0cc0 10526  1c1 10527  *cxr 10663   < clt 10664  cle 10665  NrmCVeccnv 28275  BaseSetcba 28277  0veccn0v 28279  normCVcnmcv 28281   normOpOLD cnmoo 28432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-grpo 28184  df-gid 28185  df-ginv 28186  df-ablo 28236  df-vc 28250  df-nv 28283  df-va 28286  df-ba 28287  df-sm 28288  df-0v 28289  df-nmcv 28291  df-nmoo 28436
This theorem is referenced by:  nmlnogt0  28488  htthlem  28608
  Copyright terms: Public domain W3C validator