MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Structured version   Visualization version   GIF version

Theorem nmooge0 30711
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooge0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))

Proof of Theorem nmooge0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11162 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ∈ ℝ*)
3 simp2 1137 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 𝑊 ∈ NrmCVec)
4 nmoxr.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 eqid 2729 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
64, 5nvzcl 30578 . . . . . . 7 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
7 ffvelcdm 7015 . . . . . . 7 ((𝑇:𝑋𝑌 ∧ (0vec𝑈) ∈ 𝑋) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
86, 7sylan2 593 . . . . . 6 ((𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
98ancoms 458 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
1093adant2 1131 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
11 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
12 eqid 2729 . . . . 5 (normCV𝑊) = (normCV𝑊)
1311, 12nvcl 30605 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
143, 10, 13syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
1514rexrd 11165 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ*)
16 nmoxr.3 . . 3 𝑁 = (𝑈 normOpOLD 𝑊)
174, 11, 16nmoxr 30710 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
1811, 12nvge0 30617 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
193, 10, 18syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
2011, 12nmosetre 30708 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
21 ressxr 11159 . . . . . . 7 ℝ ⊆ ℝ*
2220, 21sstrdi 3948 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ*)
23 eqid 2729 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
244, 5, 23nmosetn0 30709 . . . . . 6 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
25 supxrub 13226 . . . . . 6 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ* ∧ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
2622, 24, 25syl2an 596 . . . . 5 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
27263impa 1109 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
28273comr 1125 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
294, 11, 23, 12, 16nmooval 30707 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
3028, 29breqtrrd 5120 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ (𝑁𝑇))
312, 15, 17, 19, 30xrletrd 13064 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3903   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cr 11008  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  cle 11150  NrmCVeccnv 30528  BaseSetcba 30530  0veccn0v 30532  normCVcnmcv 30534   normOpOLD cnmoo 30685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-nmoo 30689
This theorem is referenced by:  nmlnogt0  30741  htthlem  30861
  Copyright terms: Public domain W3C validator