MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Structured version   Visualization version   GIF version

Theorem nmooge0 29030
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooge0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))

Proof of Theorem nmooge0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10953 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ∈ ℝ*)
3 simp2 1135 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 𝑊 ∈ NrmCVec)
4 nmoxr.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 eqid 2738 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
64, 5nvzcl 28897 . . . . . . 7 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
7 ffvelrn 6941 . . . . . . 7 ((𝑇:𝑋𝑌 ∧ (0vec𝑈) ∈ 𝑋) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
86, 7sylan2 592 . . . . . 6 ((𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
98ancoms 458 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
1093adant2 1129 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
11 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
12 eqid 2738 . . . . 5 (normCV𝑊) = (normCV𝑊)
1311, 12nvcl 28924 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
143, 10, 13syl2anc 583 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
1514rexrd 10956 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ*)
16 nmoxr.3 . . 3 𝑁 = (𝑈 normOpOLD 𝑊)
174, 11, 16nmoxr 29029 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
1811, 12nvge0 28936 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
193, 10, 18syl2anc 583 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
2011, 12nmosetre 29027 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
21 ressxr 10950 . . . . . . 7 ℝ ⊆ ℝ*
2220, 21sstrdi 3929 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ*)
23 eqid 2738 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
244, 5, 23nmosetn0 29028 . . . . . 6 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
25 supxrub 12987 . . . . . 6 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ* ∧ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
2622, 24, 25syl2an 595 . . . . 5 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
27263impa 1108 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
28273comr 1123 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
294, 11, 23, 12, 16nmooval 29026 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
3028, 29breqtrrd 5098 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ (𝑁𝑇))
312, 15, 17, 19, 30xrletrd 12825 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802  1c1 10803  *cxr 10939   < clt 10940  cle 10941  NrmCVeccnv 28847  BaseSetcba 28849  0veccn0v 28851  normCVcnmcv 28853   normOpOLD cnmoo 29004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-nmoo 29008
This theorem is referenced by:  nmlnogt0  29060  htthlem  29180
  Copyright terms: Public domain W3C validator