MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Structured version   Visualization version   GIF version

Theorem nmooge0 28550
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooge0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))

Proof of Theorem nmooge0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10677 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ∈ ℝ*)
3 simp2 1134 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 𝑊 ∈ NrmCVec)
4 nmoxr.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 eqid 2798 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
64, 5nvzcl 28417 . . . . . . 7 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
7 ffvelrn 6826 . . . . . . 7 ((𝑇:𝑋𝑌 ∧ (0vec𝑈) ∈ 𝑋) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
86, 7sylan2 595 . . . . . 6 ((𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
98ancoms 462 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
1093adant2 1128 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
11 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
12 eqid 2798 . . . . 5 (normCV𝑊) = (normCV𝑊)
1311, 12nvcl 28444 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
143, 10, 13syl2anc 587 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
1514rexrd 10680 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ*)
16 nmoxr.3 . . 3 𝑁 = (𝑈 normOpOLD 𝑊)
174, 11, 16nmoxr 28549 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
1811, 12nvge0 28456 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
193, 10, 18syl2anc 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
2011, 12nmosetre 28547 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
21 ressxr 10674 . . . . . . 7 ℝ ⊆ ℝ*
2220, 21sstrdi 3927 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ*)
23 eqid 2798 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
244, 5, 23nmosetn0 28548 . . . . . 6 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
25 supxrub 12705 . . . . . 6 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ* ∧ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
2622, 24, 25syl2an 598 . . . . 5 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
27263impa 1107 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
28273comr 1122 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
294, 11, 23, 12, 16nmooval 28546 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
3028, 29breqtrrd 5058 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ (𝑁𝑇))
312, 15, 17, 19, 30xrletrd 12543 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  wss 3881   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  supcsup 8888  cr 10525  0cc0 10526  1c1 10527  *cxr 10663   < clt 10664  cle 10665  NrmCVeccnv 28367  BaseSetcba 28369  0veccn0v 28371  normCVcnmcv 28373   normOpOLD cnmoo 28524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ginv 28278  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-nmoo 28528
This theorem is referenced by:  nmlnogt0  28580  htthlem  28700
  Copyright terms: Public domain W3C validator