Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmooge0 | Structured version Visualization version GIF version |
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmooge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10953 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ∈ ℝ*) |
3 | simp2 1135 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 𝑊 ∈ NrmCVec) | |
4 | nmoxr.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | eqid 2738 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
6 | 4, 5 | nvzcl 28897 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) ∈ 𝑋) |
7 | ffvelrn 6941 | . . . . . . 7 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (0vec‘𝑈) ∈ 𝑋) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) | |
8 | 6, 7 | sylan2 592 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
10 | 9 | 3adant2 1129 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
11 | nmoxr.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
12 | eqid 2738 | . . . . 5 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
13 | 11, 12 | nvcl 28924 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
14 | 3, 10, 13 | syl2anc 583 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
15 | 14 | rexrd 10956 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ*) |
16 | nmoxr.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
17 | 4, 11, 16 | nmoxr 29029 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
18 | 11, 12 | nvge0 28936 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
19 | 3, 10, 18 | syl2anc 583 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
20 | 11, 12 | nmosetre 29027 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ) |
21 | ressxr 10950 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
22 | 20, 21 | sstrdi 3929 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ*) |
23 | eqid 2738 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
24 | 4, 5, 23 | nmosetn0 29028 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) |
25 | supxrub 12987 | . . . . . 6 ⊢ (({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ* ∧ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) | |
26 | 22, 24, 25 | syl2an 595 | . . . . 5 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
27 | 26 | 3impa 1108 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
28 | 27 | 3comr 1123 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
29 | 4, 11, 23, 12, 16 | nmooval 29026 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
30 | 28, 29 | breqtrrd 5098 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ (𝑁‘𝑇)) |
31 | 2, 15, 17, 19, 30 | xrletrd 12825 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℝcr 10801 0cc0 10802 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 NrmCVeccnv 28847 BaseSetcba 28849 0veccn0v 28851 normCVcnmcv 28853 normOpOLD cnmoo 29004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-nmoo 29008 |
This theorem is referenced by: nmlnogt0 29060 htthlem 29180 |
Copyright terms: Public domain | W3C validator |