| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmooge0 | Structured version Visualization version GIF version | ||
| Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| Ref | Expression |
|---|---|
| nmooge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11291 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ∈ ℝ*) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 𝑊 ∈ NrmCVec) | |
| 4 | nmoxr.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | eqid 2734 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 6 | 4, 5 | nvzcl 30600 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) ∈ 𝑋) |
| 7 | ffvelcdm 7082 | . . . . . . 7 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (0vec‘𝑈) ∈ 𝑋) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) | |
| 8 | 6, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
| 9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
| 10 | 9 | 3adant2 1131 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
| 11 | nmoxr.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 12 | eqid 2734 | . . . . 5 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
| 13 | 11, 12 | nvcl 30627 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
| 14 | 3, 10, 13 | syl2anc 584 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
| 15 | 14 | rexrd 11294 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ*) |
| 16 | nmoxr.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 17 | 4, 11, 16 | nmoxr 30732 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
| 18 | 11, 12 | nvge0 30639 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
| 19 | 3, 10, 18 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
| 20 | 11, 12 | nmosetre 30730 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ) |
| 21 | ressxr 11288 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
| 22 | 20, 21 | sstrdi 3978 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ*) |
| 23 | eqid 2734 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 24 | 4, 5, 23 | nmosetn0 30731 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) |
| 25 | supxrub 13349 | . . . . . 6 ⊢ (({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ* ∧ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) | |
| 26 | 22, 24, 25 | syl2an 596 | . . . . 5 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 27 | 26 | 3impa 1109 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 28 | 27 | 3comr 1125 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 29 | 4, 11, 23, 12, 16 | nmooval 30729 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 30 | 28, 29 | breqtrrd 5153 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ (𝑁‘𝑇)) |
| 31 | 2, 15, 17, 19, 30 | xrletrd 13187 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 ⊆ wss 3933 class class class wbr 5125 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 supcsup 9463 ℝcr 11137 0cc0 11138 1c1 11139 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 NrmCVeccnv 30550 BaseSetcba 30552 0veccn0v 30554 normCVcnmcv 30556 normOpOLD cnmoo 30707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-grpo 30459 df-gid 30460 df-ginv 30461 df-ablo 30511 df-vc 30525 df-nv 30558 df-va 30561 df-ba 30562 df-sm 30563 df-0v 30564 df-nmcv 30566 df-nmoo 30711 |
| This theorem is referenced by: nmlnogt0 30763 htthlem 30883 |
| Copyright terms: Public domain | W3C validator |