| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmooge0 | Structured version Visualization version GIF version | ||
| Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| Ref | Expression |
|---|---|
| nmooge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11197 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ∈ ℝ*) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 𝑊 ∈ NrmCVec) | |
| 4 | nmoxr.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 6 | 4, 5 | nvzcl 30613 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) ∈ 𝑋) |
| 7 | ffvelcdm 7035 | . . . . . . 7 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (0vec‘𝑈) ∈ 𝑋) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) | |
| 8 | 6, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
| 9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
| 10 | 9 | 3adant2 1131 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
| 11 | nmoxr.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
| 13 | 11, 12 | nvcl 30640 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
| 14 | 3, 10, 13 | syl2anc 584 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
| 15 | 14 | rexrd 11200 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ*) |
| 16 | nmoxr.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 17 | 4, 11, 16 | nmoxr 30745 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
| 18 | 11, 12 | nvge0 30652 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
| 19 | 3, 10, 18 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
| 20 | 11, 12 | nmosetre 30743 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ) |
| 21 | ressxr 11194 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
| 22 | 20, 21 | sstrdi 3956 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ*) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 24 | 4, 5, 23 | nmosetn0 30744 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) |
| 25 | supxrub 13260 | . . . . . 6 ⊢ (({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ* ∧ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) | |
| 26 | 22, 24, 25 | syl2an 596 | . . . . 5 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 27 | 26 | 3impa 1109 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 28 | 27 | 3comr 1125 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 29 | 4, 11, 23, 12, 16 | nmooval 30742 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 30 | 28, 29 | breqtrrd 5130 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ (𝑁‘𝑇)) |
| 31 | 2, 15, 17, 19, 30 | xrletrd 13098 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3911 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supcsup 9367 ℝcr 11043 0cc0 11044 1c1 11045 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 NrmCVeccnv 30563 BaseSetcba 30565 0veccn0v 30567 normCVcnmcv 30569 normOpOLD cnmoo 30720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-grpo 30472 df-gid 30473 df-ginv 30474 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-nmcv 30579 df-nmoo 30724 |
| This theorem is referenced by: nmlnogt0 30776 htthlem 30896 |
| Copyright terms: Public domain | W3C validator |