Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmooge0 | Structured version Visualization version GIF version |
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmooge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10731 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ∈ ℝ*) |
3 | simp2 1134 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 𝑊 ∈ NrmCVec) | |
4 | nmoxr.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | eqid 2758 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
6 | 4, 5 | nvzcl 28521 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) ∈ 𝑋) |
7 | ffvelrn 6845 | . . . . . . 7 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (0vec‘𝑈) ∈ 𝑋) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) | |
8 | 6, 7 | sylan2 595 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
9 | 8 | ancoms 462 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
10 | 9 | 3adant2 1128 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
11 | nmoxr.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
12 | eqid 2758 | . . . . 5 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
13 | 11, 12 | nvcl 28548 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
14 | 3, 10, 13 | syl2anc 587 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
15 | 14 | rexrd 10734 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ*) |
16 | nmoxr.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
17 | 4, 11, 16 | nmoxr 28653 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
18 | 11, 12 | nvge0 28560 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
19 | 3, 10, 18 | syl2anc 587 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
20 | 11, 12 | nmosetre 28651 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ) |
21 | ressxr 10728 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
22 | 20, 21 | sstrdi 3906 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ*) |
23 | eqid 2758 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
24 | 4, 5, 23 | nmosetn0 28652 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) |
25 | supxrub 12763 | . . . . . 6 ⊢ (({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ* ∧ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) | |
26 | 22, 24, 25 | syl2an 598 | . . . . 5 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
27 | 26 | 3impa 1107 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
28 | 27 | 3comr 1122 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
29 | 4, 11, 23, 12, 16 | nmooval 28650 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
30 | 28, 29 | breqtrrd 5063 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ (𝑁‘𝑇)) |
31 | 2, 15, 17, 19, 30 | xrletrd 12601 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 ⊆ wss 3860 class class class wbr 5035 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 supcsup 8942 ℝcr 10579 0cc0 10580 1c1 10581 ℝ*cxr 10717 < clt 10718 ≤ cle 10719 NrmCVeccnv 28471 BaseSetcba 28473 0veccn0v 28475 normCVcnmcv 28477 normOpOLD cnmoo 28628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-grpo 28380 df-gid 28381 df-ginv 28382 df-ablo 28432 df-vc 28446 df-nv 28479 df-va 28482 df-ba 28483 df-sm 28484 df-0v 28485 df-nmcv 28487 df-nmoo 28632 |
This theorem is referenced by: nmlnogt0 28684 htthlem 28804 |
Copyright terms: Public domain | W3C validator |