![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfundm | Structured version Visualization version GIF version |
Description: The size of a set function is equal to the size of its domain. (Contributed by BTernaryTau, 30-Sep-2023.) |
Ref | Expression |
---|---|
hashfundm | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashfun 14396 | . . . 4 ⊢ (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹))) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (𝐹 ∈ Fin → (Fun 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))) |
3 | 2 | adantld 491 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹))) |
4 | hashinf 14294 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = +∞) | |
5 | 4 | 3adant2 1131 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = +∞) |
6 | fundmfibi 9330 | . . . . . . . . 9 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | |
7 | 6 | notbid 317 | . . . . . . . 8 ⊢ (Fun 𝐹 → (¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin)) |
8 | 7 | adantl 482 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin)) |
9 | dmexg 7893 | . . . . . . . . . 10 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
10 | hashinf 14294 | . . . . . . . . . 10 ⊢ ((dom 𝐹 ∈ V ∧ ¬ dom 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) | |
11 | 9, 10 | sylan 580 | . . . . . . . . 9 ⊢ ((𝐹 ∈ 𝑉 ∧ ¬ dom 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) |
12 | 11 | ex 413 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑉 → (¬ dom 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
13 | 12 | adantr 481 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ dom 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
14 | 8, 13 | sylbid 239 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
15 | 14 | 3impia 1117 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) |
16 | 5, 15 | eqtr4d 2775 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = (♯‘dom 𝐹)) |
17 | 16 | 3comr 1125 | . . 3 ⊢ ((¬ 𝐹 ∈ Fin ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
18 | 17 | 3expib 1122 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹))) |
19 | 3, 18 | pm2.61i 182 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 dom cdm 5676 Fun wfun 6537 ‘cfv 6543 Fincfn 8938 +∞cpnf 11244 ♯chash 14289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-fz 13484 df-hash 14290 |
This theorem is referenced by: hashf1dmrn 14402 |
Copyright terms: Public domain | W3C validator |