![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfundm | Structured version Visualization version GIF version |
Description: The size of a set function is equal to the size of its domain. (Contributed by BTernaryTau, 30-Sep-2023.) |
Ref | Expression |
---|---|
hashfundm | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashfun 14402 | . . . 4 ⊢ (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹))) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (𝐹 ∈ Fin → (Fun 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))) |
3 | 2 | adantld 490 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹))) |
4 | hashinf 14300 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = +∞) | |
5 | 4 | 3adant2 1128 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = +∞) |
6 | fundmfibi 9333 | . . . . . . . . 9 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | |
7 | 6 | notbid 318 | . . . . . . . 8 ⊢ (Fun 𝐹 → (¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin)) |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin)) |
9 | dmexg 7891 | . . . . . . . . . 10 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
10 | hashinf 14300 | . . . . . . . . . 10 ⊢ ((dom 𝐹 ∈ V ∧ ¬ dom 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) | |
11 | 9, 10 | sylan 579 | . . . . . . . . 9 ⊢ ((𝐹 ∈ 𝑉 ∧ ¬ dom 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) |
12 | 11 | ex 412 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑉 → (¬ dom 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ dom 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
14 | 8, 13 | sylbid 239 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
15 | 14 | 3impia 1114 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) |
16 | 5, 15 | eqtr4d 2769 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = (♯‘dom 𝐹)) |
17 | 16 | 3comr 1122 | . . 3 ⊢ ((¬ 𝐹 ∈ Fin ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
18 | 17 | 3expib 1119 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹))) |
19 | 3, 18 | pm2.61i 182 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 dom cdm 5669 Fun wfun 6531 ‘cfv 6537 Fincfn 8941 +∞cpnf 11249 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: hashf1dmrn 14408 |
Copyright terms: Public domain | W3C validator |