| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfundm | Structured version Visualization version GIF version | ||
| Description: The size of a set function is equal to the size of its domain. (Contributed by BTernaryTau, 30-Sep-2023.) |
| Ref | Expression |
|---|---|
| hashfundm | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfun 14344 | . . . 4 ⊢ (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹))) | |
| 2 | 1 | biimpd 229 | . . 3 ⊢ (𝐹 ∈ Fin → (Fun 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))) |
| 3 | 2 | adantld 490 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹))) |
| 4 | hashinf 14242 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = +∞) | |
| 5 | 4 | 3adant2 1131 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = +∞) |
| 6 | fundmfibi 9220 | . . . . . . . . 9 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | |
| 7 | 6 | notbid 318 | . . . . . . . 8 ⊢ (Fun 𝐹 → (¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin)) |
| 9 | dmexg 7831 | . . . . . . . . . 10 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 10 | hashinf 14242 | . . . . . . . . . 10 ⊢ ((dom 𝐹 ∈ V ∧ ¬ dom 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) | |
| 11 | 9, 10 | sylan 580 | . . . . . . . . 9 ⊢ ((𝐹 ∈ 𝑉 ∧ ¬ dom 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) |
| 12 | 11 | ex 412 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑉 → (¬ dom 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ dom 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
| 14 | 8, 13 | sylbid 240 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (¬ 𝐹 ∈ Fin → (♯‘dom 𝐹) = +∞)) |
| 15 | 14 | 3impia 1117 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘dom 𝐹) = +∞) |
| 16 | 5, 15 | eqtr4d 2769 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐹) = (♯‘dom 𝐹)) |
| 17 | 16 | 3comr 1125 | . . 3 ⊢ ((¬ 𝐹 ∈ Fin ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
| 18 | 17 | 3expib 1122 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹))) |
| 19 | 3, 18 | pm2.61i 182 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 dom cdm 5614 Fun wfun 6475 ‘cfv 6481 Fincfn 8869 +∞cpnf 11143 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: hashf1dmrn 14350 wrdpmtrlast 33062 extdgfialglem1 33705 |
| Copyright terms: Public domain | W3C validator |