| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmfil | Structured version Visualization version GIF version | ||
| Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmfil | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmval 23858 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) | |
| 2 | eqid 2731 | . . . . 5 ⊢ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) | |
| 3 | 2 | fbasrn 23799 | . . . 4 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐴) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
| 4 | 3 | 3comr 1125 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
| 5 | fgcl 23793 | . . 3 ⊢ (ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) |
| 7 | 1, 6 | eqeltrd 2831 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ↦ cmpt 5170 ran crn 5615 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 fBascfbas 21279 filGencfg 21280 Filcfil 23760 FilMap cfm 23848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-fbas 21288 df-fg 21289 df-fil 23761 df-fm 23853 |
| This theorem is referenced by: fmf 23860 fmufil 23874 fmco 23876 ufldom 23877 flfnei 23906 isflf 23908 flfcnp 23919 isfcf 23949 cnpfcfi 23955 cnpfcf 23956 cnextucn 24217 |
| Copyright terms: Public domain | W3C validator |