MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfil Structured version   Visualization version   GIF version

Theorem fmfil 23952
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmfil ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋))

Proof of Theorem fmfil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmval 23951 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
2 eqid 2737 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
32fbasrn 23892 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
433comr 1126 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
5 fgcl 23886 . . 3 (ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (Fil‘𝑋))
64, 5syl 17 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (Fil‘𝑋))
71, 6eqeltrd 2841 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  cmpt 5225  ran crn 5686  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  fBascfbas 21352  filGencfg 21353  Filcfil 23853   FilMap cfm 23941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-fbas 21361  df-fg 21362  df-fil 23854  df-fm 23946
This theorem is referenced by:  fmf  23953  fmufil  23967  fmco  23969  ufldom  23970  flfnei  23999  isflf  24001  flfcnp  24012  isfcf  24042  cnpfcfi  24048  cnpfcf  24049  cnextucn  24312
  Copyright terms: Public domain W3C validator