![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmfil | Structured version Visualization version GIF version |
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
fmfil | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmval 22155 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) | |
2 | eqid 2778 | . . . . 5 ⊢ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) | |
3 | 2 | fbasrn 22096 | . . . 4 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐴) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
4 | 3 | 3comr 1116 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
5 | fgcl 22090 | . . 3 ⊢ (ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) |
7 | 1, 6 | eqeltrd 2859 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 ∈ wcel 2107 ↦ cmpt 4965 ran crn 5356 “ cima 5358 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 fBascfbas 20130 filGencfg 20131 Filcfil 22057 FilMap cfm 22145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-fbas 20139 df-fg 20140 df-fil 22058 df-fm 22150 |
This theorem is referenced by: fmf 22157 fmufil 22171 fmco 22173 ufldom 22174 flfnei 22203 isflf 22205 flfcnp 22216 isfcf 22246 cnpfcfi 22252 cnpfcf 22253 cnextucn 22515 |
Copyright terms: Public domain | W3C validator |