| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmfil | Structured version Visualization version GIF version | ||
| Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmfil | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmval 23863 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) | |
| 3 | 2 | fbasrn 23804 | . . . 4 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐴) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
| 4 | 3 | 3comr 1125 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
| 5 | fgcl 23798 | . . 3 ⊢ (ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) |
| 7 | 1, 6 | eqeltrd 2828 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ↦ cmpt 5183 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 fBascfbas 21284 filGencfg 21285 Filcfil 23765 FilMap cfm 23853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-fbas 21293 df-fg 21294 df-fil 23766 df-fm 23858 |
| This theorem is referenced by: fmf 23865 fmufil 23879 fmco 23881 ufldom 23882 flfnei 23911 isflf 23913 flfcnp 23924 isfcf 23954 cnpfcfi 23960 cnpfcf 23961 cnextucn 24223 |
| Copyright terms: Public domain | W3C validator |