Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmfil | Structured version Visualization version GIF version |
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
fmfil | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmval 23204 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) | |
2 | eqid 2737 | . . . . 5 ⊢ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) | |
3 | 2 | fbasrn 23145 | . . . 4 ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ 𝐴) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
4 | 3 | 3comr 1125 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
5 | fgcl 23139 | . . 3 ⊢ (ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (Fil‘𝑋)) |
7 | 1, 6 | eqeltrd 2838 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2106 ↦ cmpt 5183 ran crn 5628 “ cima 5630 ⟶wf 6484 ‘cfv 6488 (class class class)co 7346 fBascfbas 20695 filGencfg 20696 Filcfil 23106 FilMap cfm 23194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-fbas 20704 df-fg 20705 df-fil 23107 df-fm 23199 |
This theorem is referenced by: fmf 23206 fmufil 23220 fmco 23222 ufldom 23223 flfnei 23252 isflf 23254 flfcnp 23265 isfcf 23295 cnpfcfi 23301 cnpfcf 23302 cnextucn 23565 |
Copyright terms: Public domain | W3C validator |