MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div12 Structured version   Visualization version   GIF version

Theorem div12 11790
Description: A commutative/associative law for division. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
div12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))

Proof of Theorem div12
StepHypRef Expression
1 divcl 11774 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
213expb 1120 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) ∈ ℂ)
3 mulcom 11084 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (𝐴 · (𝐵 / 𝐶)) = ((𝐵 / 𝐶) · 𝐴))
42, 3sylan2 593 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → (𝐴 · (𝐵 / 𝐶)) = ((𝐵 / 𝐶) · 𝐴))
543impb 1114 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = ((𝐵 / 𝐶) · 𝐴))
6 div13 11789 . . 3 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ 𝐴 ∈ ℂ) → ((𝐵 / 𝐶) · 𝐴) = ((𝐴 / 𝐶) · 𝐵))
763comr 1125 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵 / 𝐶) · 𝐴) = ((𝐴 / 𝐶) · 𝐵))
8 divcl 11774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
983expb 1120 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ)
10 mulcom 11084 . . . 4 (((𝐴 / 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 / 𝐶) · 𝐵) = (𝐵 · (𝐴 / 𝐶)))
119, 10stoic3 1777 . . 3 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ 𝐵 ∈ ℂ) → ((𝐴 / 𝐶) · 𝐵) = (𝐵 · (𝐴 / 𝐶)))
12113com23 1126 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) · 𝐵) = (𝐵 · (𝐴 / 𝐶)))
135, 7, 123eqtrd 2769 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  (class class class)co 7341  cc 10996  0cc0 10998   · cmul 11003   / cdiv 11766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767
This theorem is referenced by:  div2neg  11836  div12d  11925  bpoly3  15957  efival  16053  cos01bnd  16087  cos01gt0  16092  sincosq4sgn  26430  bclbnd  27211  bposlem9  27223  dchrvmasum2lem  27427  dchrvmasumiflem1  27432  selbergr  27499  pntpbnd1a  27516  pntibndlem2  27522  dignn0flhalflem1  48626
  Copyright terms: Public domain W3C validator