MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div12 Structured version   Visualization version   GIF version

Theorem div12 11313
Description: A commutative/associative law for division. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
div12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))

Proof of Theorem div12
StepHypRef Expression
1 divcl 11297 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
213expb 1115 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) ∈ ℂ)
3 mulcom 10616 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (𝐴 · (𝐵 / 𝐶)) = ((𝐵 / 𝐶) · 𝐴))
42, 3sylan2 594 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → (𝐴 · (𝐵 / 𝐶)) = ((𝐵 / 𝐶) · 𝐴))
543impb 1110 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = ((𝐵 / 𝐶) · 𝐴))
6 div13 11312 . . 3 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ 𝐴 ∈ ℂ) → ((𝐵 / 𝐶) · 𝐴) = ((𝐴 / 𝐶) · 𝐵))
763comr 1120 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵 / 𝐶) · 𝐴) = ((𝐴 / 𝐶) · 𝐵))
8 divcl 11297 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
983expb 1115 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ)
10 mulcom 10616 . . . 4 (((𝐴 / 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 / 𝐶) · 𝐵) = (𝐵 · (𝐴 / 𝐶)))
119, 10stoic3 1776 . . 3 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ 𝐵 ∈ ℂ) → ((𝐴 / 𝐶) · 𝐵) = (𝐵 · (𝐴 / 𝐶)))
12113com23 1121 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) · 𝐵) = (𝐵 · (𝐴 / 𝐶)))
135, 7, 123eqtrd 2859 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  (class class class)co 7149  cc 10528  0cc0 10530   · cmul 10535   / cdiv 11290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291
This theorem is referenced by:  div2neg  11356  div12d  11445  bpoly3  15405  efival  15498  cos01bnd  15532  cos01gt0  15537  sincosq4sgn  25083  bclbnd  25852  bposlem9  25864  dchrvmasum2lem  26068  dchrvmasumiflem1  26073  selbergr  26140  pntpbnd1a  26157  pntibndlem2  26163  dignn0flhalflem1  44751
  Copyright terms: Public domain W3C validator