MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvsi Structured version   Visualization version   GIF version

Theorem iscvsi 25027
Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
iscvsp.t · = ( ·𝑠𝑊)
iscvsp.a + = (+g𝑊)
iscvsp.v 𝑉 = (Base‘𝑊)
iscvsp.s 𝑆 = (Scalar‘𝑊)
iscvsp.k 𝐾 = (Base‘𝑆)
iscvsi.1 𝑊 ∈ Grp
iscvsi.2 𝑆 = (ℂflds 𝐾)
iscvsi.3 𝑆 ∈ DivRing
iscvsi.4 𝐾 ∈ (SubRing‘ℂfld)
iscvsi.5 (𝑥𝑉 → (1 · 𝑥) = 𝑥)
iscvsi.6 ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)
iscvsi.7 ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
iscvsi.8 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))
iscvsi.9 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))
Assertion
Ref Expression
iscvsi 𝑊 ∈ ℂVec
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem iscvsi
StepHypRef Expression
1 iscvsi.1 . . 3 𝑊 ∈ Grp
2 iscvsi.3 . . . 4 𝑆 ∈ DivRing
3 iscvsi.2 . . . 4 𝑆 = (ℂflds 𝐾)
42, 3pm3.2i 470 . . 3 (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾))
5 iscvsi.4 . . 3 𝐾 ∈ (SubRing‘ℂfld)
61, 4, 53pm3.2i 1340 . 2 (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld))
7 iscvsi.5 . . . 4 (𝑥𝑉 → (1 · 𝑥) = 𝑥)
8 iscvsi.6 . . . . . . 7 ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)
98ancoms 458 . . . . . 6 ((𝑥𝑉𝑦𝐾) → (𝑦 · 𝑥) ∈ 𝑉)
10 iscvsi.7 . . . . . . . . 9 ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
11103com12 1123 . . . . . . . 8 ((𝑥𝑉𝑦𝐾𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
12113expa 1118 . . . . . . 7 (((𝑥𝑉𝑦𝐾) ∧ 𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
1312ralrimiva 3121 . . . . . 6 ((𝑥𝑉𝑦𝐾) → ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
14 iscvsi.8 . . . . . . . . . 10 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))
15 iscvsi.9 . . . . . . . . . 10 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))
1614, 15jca 511 . . . . . . . . 9 ((𝑦𝐾𝑧𝐾𝑥𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
17163comr 1125 . . . . . . . 8 ((𝑥𝑉𝑦𝐾𝑧𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
18173expa 1118 . . . . . . 7 (((𝑥𝑉𝑦𝐾) ∧ 𝑧𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
1918ralrimiva 3121 . . . . . 6 ((𝑥𝑉𝑦𝐾) → ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
209, 13, 193jca 1128 . . . . 5 ((𝑥𝑉𝑦𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
2120ralrimiva 3121 . . . 4 (𝑥𝑉 → ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
227, 21jca 511 . . 3 (𝑥𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
2322rgen 3046 . 2 𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
24 iscvsp.t . . 3 · = ( ·𝑠𝑊)
25 iscvsp.a . . 3 + = (+g𝑊)
26 iscvsp.v . . 3 𝑉 = (Base‘𝑊)
27 iscvsp.s . . 3 𝑆 = (Scalar‘𝑊)
28 iscvsp.k . . 3 𝐾 = (Base‘𝑆)
2924, 25, 26, 27, 28iscvsp 25026 . 2 (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
306, 23, 29mpbir2an 711 1 𝑊 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012   · cmul 11014  Basecbs 17120  s cress 17141  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  Grpcgrp 18812  SubRingcsubrg 20454  DivRingcdr 20614  fldccnfld 21261  ℂVecccvs 25021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-subg 19002  df-cmn 19661  df-mgp 20026  df-ur 20067  df-ring 20120  df-cring 20121  df-subrg 20455  df-lmod 20765  df-lvec 21007  df-cnfld 21262  df-clm 24961  df-cvs 25022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator