![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscvsi | Structured version Visualization version GIF version |
Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
Ref | Expression |
---|---|
iscvsp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
iscvsp.a | ⊢ + = (+g‘𝑊) |
iscvsp.v | ⊢ 𝑉 = (Base‘𝑊) |
iscvsp.s | ⊢ 𝑆 = (Scalar‘𝑊) |
iscvsp.k | ⊢ 𝐾 = (Base‘𝑆) |
iscvsi.1 | ⊢ 𝑊 ∈ Grp |
iscvsi.2 | ⊢ 𝑆 = (ℂfld ↾s 𝐾) |
iscvsi.3 | ⊢ 𝑆 ∈ DivRing |
iscvsi.4 | ⊢ 𝐾 ∈ (SubRing‘ℂfld) |
iscvsi.5 | ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) |
iscvsi.6 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) |
iscvsi.7 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
iscvsi.8 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) |
iscvsi.9 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) |
Ref | Expression |
---|---|
iscvsi | ⊢ 𝑊 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscvsi.1 | . . 3 ⊢ 𝑊 ∈ Grp | |
2 | iscvsi.3 | . . . 4 ⊢ 𝑆 ∈ DivRing | |
3 | iscvsi.2 | . . . 4 ⊢ 𝑆 = (ℂfld ↾s 𝐾) | |
4 | 2, 3 | pm3.2i 470 | . . 3 ⊢ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) |
5 | iscvsi.4 | . . 3 ⊢ 𝐾 ∈ (SubRing‘ℂfld) | |
6 | 1, 4, 5 | 3pm3.2i 1339 | . 2 ⊢ (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) |
7 | iscvsi.5 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) | |
8 | iscvsi.6 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) | |
9 | 8 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝑦 · 𝑥) ∈ 𝑉) |
10 | iscvsi.7 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) | |
11 | 10 | 3com12 1123 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
12 | 11 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
13 | 12 | ralrimiva 3152 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
14 | iscvsi.8 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) | |
15 | iscvsi.9 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) | |
16 | 14, 15 | jca 511 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
17 | 16 | 3comr 1125 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
18 | 17 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
19 | 18 | ralrimiva 3152 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
20 | 9, 13, 19 | 3jca 1128 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
21 | 20 | ralrimiva 3152 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
22 | 7, 21 | jca 511 | . . 3 ⊢ (𝑥 ∈ 𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) |
23 | 22 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
24 | iscvsp.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
25 | iscvsp.a | . . 3 ⊢ + = (+g‘𝑊) | |
26 | iscvsp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
27 | iscvsp.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑊) | |
28 | iscvsp.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
29 | 24, 25, 26, 27, 28 | iscvsp 25180 | . 2 ⊢ (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
30 | 6, 23, 29 | mpbir2an 710 | 1 ⊢ 𝑊 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 Grpcgrp 18973 SubRingcsubrg 20595 DivRingcdr 20751 ℂfldccnfld 21387 ℂVecccvs 25175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-subg 19163 df-cmn 19824 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-subrg 20597 df-lmod 20882 df-lvec 21125 df-cnfld 21388 df-clm 25115 df-cvs 25176 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |