MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvsi Structured version   Visualization version   GIF version

Theorem iscvsi 24614
Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
iscvsp.t · = ( ·𝑠𝑊)
iscvsp.a + = (+g𝑊)
iscvsp.v 𝑉 = (Base‘𝑊)
iscvsp.s 𝑆 = (Scalar‘𝑊)
iscvsp.k 𝐾 = (Base‘𝑆)
iscvsi.1 𝑊 ∈ Grp
iscvsi.2 𝑆 = (ℂflds 𝐾)
iscvsi.3 𝑆 ∈ DivRing
iscvsi.4 𝐾 ∈ (SubRing‘ℂfld)
iscvsi.5 (𝑥𝑉 → (1 · 𝑥) = 𝑥)
iscvsi.6 ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)
iscvsi.7 ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
iscvsi.8 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))
iscvsi.9 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))
Assertion
Ref Expression
iscvsi 𝑊 ∈ ℂVec
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem iscvsi
StepHypRef Expression
1 iscvsi.1 . . 3 𝑊 ∈ Grp
2 iscvsi.3 . . . 4 𝑆 ∈ DivRing
3 iscvsi.2 . . . 4 𝑆 = (ℂflds 𝐾)
42, 3pm3.2i 472 . . 3 (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾))
5 iscvsi.4 . . 3 𝐾 ∈ (SubRing‘ℂfld)
61, 4, 53pm3.2i 1340 . 2 (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld))
7 iscvsi.5 . . . 4 (𝑥𝑉 → (1 · 𝑥) = 𝑥)
8 iscvsi.6 . . . . . . 7 ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)
98ancoms 460 . . . . . 6 ((𝑥𝑉𝑦𝐾) → (𝑦 · 𝑥) ∈ 𝑉)
10 iscvsi.7 . . . . . . . . 9 ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
11103com12 1124 . . . . . . . 8 ((𝑥𝑉𝑦𝐾𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
12113expa 1119 . . . . . . 7 (((𝑥𝑉𝑦𝐾) ∧ 𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
1312ralrimiva 3147 . . . . . 6 ((𝑥𝑉𝑦𝐾) → ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
14 iscvsi.8 . . . . . . . . . 10 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))
15 iscvsi.9 . . . . . . . . . 10 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))
1614, 15jca 513 . . . . . . . . 9 ((𝑦𝐾𝑧𝐾𝑥𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
17163comr 1126 . . . . . . . 8 ((𝑥𝑉𝑦𝐾𝑧𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
18173expa 1119 . . . . . . 7 (((𝑥𝑉𝑦𝐾) ∧ 𝑧𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
1918ralrimiva 3147 . . . . . 6 ((𝑥𝑉𝑦𝐾) → ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
209, 13, 193jca 1129 . . . . 5 ((𝑥𝑉𝑦𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
2120ralrimiva 3147 . . . 4 (𝑥𝑉 → ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
227, 21jca 513 . . 3 (𝑥𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
2322rgen 3064 . 2 𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
24 iscvsp.t . . 3 · = ( ·𝑠𝑊)
25 iscvsp.a . . 3 + = (+g𝑊)
26 iscvsp.v . . 3 𝑉 = (Base‘𝑊)
27 iscvsp.s . . 3 𝑆 = (Scalar‘𝑊)
28 iscvsp.k . . 3 𝐾 = (Base‘𝑆)
2924, 25, 26, 27, 28iscvsp 24613 . 2 (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
306, 23, 29mpbir2an 710 1 𝑊 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  cfv 6535  (class class class)co 7396  1c1 11098   + caddc 11100   · cmul 11102  Basecbs 17131  s cress 17160  +gcplusg 17184  Scalarcsca 17187   ·𝑠 cvsca 17188  Grpcgrp 18806  DivRingcdr 20293  SubRingcsubrg 20336  fldccnfld 20918  ℂVecccvs 24608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-fz 13472  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-subg 18988  df-cmn 19634  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-subrg 20338  df-lmod 20450  df-lvec 20691  df-cnfld 20919  df-clm 24548  df-cvs 24609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator