| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscvsi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
| Ref | Expression |
|---|---|
| iscvsp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| iscvsp.a | ⊢ + = (+g‘𝑊) |
| iscvsp.v | ⊢ 𝑉 = (Base‘𝑊) |
| iscvsp.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| iscvsp.k | ⊢ 𝐾 = (Base‘𝑆) |
| iscvsi.1 | ⊢ 𝑊 ∈ Grp |
| iscvsi.2 | ⊢ 𝑆 = (ℂfld ↾s 𝐾) |
| iscvsi.3 | ⊢ 𝑆 ∈ DivRing |
| iscvsi.4 | ⊢ 𝐾 ∈ (SubRing‘ℂfld) |
| iscvsi.5 | ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) |
| iscvsi.6 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) |
| iscvsi.7 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
| iscvsi.8 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) |
| iscvsi.9 | ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) |
| Ref | Expression |
|---|---|
| iscvsi | ⊢ 𝑊 ∈ ℂVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvsi.1 | . . 3 ⊢ 𝑊 ∈ Grp | |
| 2 | iscvsi.3 | . . . 4 ⊢ 𝑆 ∈ DivRing | |
| 3 | iscvsi.2 | . . . 4 ⊢ 𝑆 = (ℂfld ↾s 𝐾) | |
| 4 | 2, 3 | pm3.2i 470 | . . 3 ⊢ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) |
| 5 | iscvsi.4 | . . 3 ⊢ 𝐾 ∈ (SubRing‘ℂfld) | |
| 6 | 1, 4, 5 | 3pm3.2i 1340 | . 2 ⊢ (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | iscvsi.5 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) | |
| 8 | iscvsi.6 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) | |
| 9 | 8 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝑦 · 𝑥) ∈ 𝑉) |
| 10 | iscvsi.7 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) | |
| 11 | 10 | 3com12 1123 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
| 12 | 11 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
| 13 | 12 | ralrimiva 3124 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) |
| 14 | iscvsi.8 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) | |
| 15 | iscvsi.9 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) | |
| 16 | 14, 15 | jca 511 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
| 17 | 16 | 3comr 1125 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
| 18 | 17 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
| 19 | 18 | ralrimiva 3124 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) |
| 20 | 9, 13, 19 | 3jca 1128 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
| 21 | 20 | ralrimiva 3124 | . . . 4 ⊢ (𝑥 ∈ 𝑉 → ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
| 22 | 7, 21 | jca 511 | . . 3 ⊢ (𝑥 ∈ 𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) |
| 23 | 22 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) |
| 24 | iscvsp.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 25 | iscvsp.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 26 | iscvsp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 27 | iscvsp.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 28 | iscvsp.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 29 | 24, 25, 26, 27, 28 | iscvsp 25055 | . 2 ⊢ (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
| 30 | 6, 23, 29 | mpbir2an 711 | 1 ⊢ 𝑊 ∈ ℂVec |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 · cmul 11011 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 Grpcgrp 18846 SubRingcsubrg 20484 DivRingcdr 20644 ℂfldccnfld 21291 ℂVecccvs 25050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-subg 19036 df-cmn 19694 df-mgp 20059 df-ur 20100 df-ring 20153 df-cring 20154 df-subrg 20485 df-lmod 20795 df-lvec 21037 df-cnfld 21292 df-clm 24990 df-cvs 25051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |