MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvsi Structured version   Visualization version   GIF version

Theorem iscvsi 23734
Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
iscvsp.t · = ( ·𝑠𝑊)
iscvsp.a + = (+g𝑊)
iscvsp.v 𝑉 = (Base‘𝑊)
iscvsp.s 𝑆 = (Scalar‘𝑊)
iscvsp.k 𝐾 = (Base‘𝑆)
iscvsi.1 𝑊 ∈ Grp
iscvsi.2 𝑆 = (ℂflds 𝐾)
iscvsi.3 𝑆 ∈ DivRing
iscvsi.4 𝐾 ∈ (SubRing‘ℂfld)
iscvsi.5 (𝑥𝑉 → (1 · 𝑥) = 𝑥)
iscvsi.6 ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)
iscvsi.7 ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
iscvsi.8 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))
iscvsi.9 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))
Assertion
Ref Expression
iscvsi 𝑊 ∈ ℂVec
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem iscvsi
StepHypRef Expression
1 iscvsi.1 . . 3 𝑊 ∈ Grp
2 iscvsi.3 . . . 4 𝑆 ∈ DivRing
3 iscvsi.2 . . . 4 𝑆 = (ℂflds 𝐾)
42, 3pm3.2i 474 . . 3 (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾))
5 iscvsi.4 . . 3 𝐾 ∈ (SubRing‘ℂfld)
61, 4, 53pm3.2i 1336 . 2 (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld))
7 iscvsi.5 . . . 4 (𝑥𝑉 → (1 · 𝑥) = 𝑥)
8 iscvsi.6 . . . . . . 7 ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)
98ancoms 462 . . . . . 6 ((𝑥𝑉𝑦𝐾) → (𝑦 · 𝑥) ∈ 𝑉)
10 iscvsi.7 . . . . . . . . 9 ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
11103com12 1120 . . . . . . . 8 ((𝑥𝑉𝑦𝐾𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
12113expa 1115 . . . . . . 7 (((𝑥𝑉𝑦𝐾) ∧ 𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
1312ralrimiva 3149 . . . . . 6 ((𝑥𝑉𝑦𝐾) → ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
14 iscvsi.8 . . . . . . . . . 10 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))
15 iscvsi.9 . . . . . . . . . 10 ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))
1614, 15jca 515 . . . . . . . . 9 ((𝑦𝐾𝑧𝐾𝑥𝑉) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
17163comr 1122 . . . . . . . 8 ((𝑥𝑉𝑦𝐾𝑧𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
18173expa 1115 . . . . . . 7 (((𝑥𝑉𝑦𝐾) ∧ 𝑧𝐾) → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
1918ralrimiva 3149 . . . . . 6 ((𝑥𝑉𝑦𝐾) → ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))
209, 13, 193jca 1125 . . . . 5 ((𝑥𝑉𝑦𝐾) → ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
2120ralrimiva 3149 . . . 4 (𝑥𝑉 → ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
227, 21jca 515 . . 3 (𝑥𝑉 → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
2322rgen 3116 . 2 𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
24 iscvsp.t . . 3 · = ( ·𝑠𝑊)
25 iscvsp.a . . 3 + = (+g𝑊)
26 iscvsp.v . . 3 𝑉 = (Base‘𝑊)
27 iscvsp.s . . 3 𝑆 = (Scalar‘𝑊)
28 iscvsp.k . . 3 𝐾 = (Base‘𝑆)
2924, 25, 26, 27, 28iscvsp 23733 . 2 (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
306, 23, 29mpbir2an 710 1 𝑊 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529   · cmul 10531  Basecbs 16475  s cress 16476  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  Grpcgrp 18095  DivRingcdr 19495  SubRingcsubrg 19524  fldccnfld 20091  ℂVecccvs 23728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-lmod 19629  df-lvec 19868  df-cnfld 20092  df-clm 23668  df-cvs 23729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator