Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > colinearalglem3 | Structured version Visualization version GIF version |
Description: Lemma for colinearalg 27025. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
Ref | Expression |
---|---|
colinearalglem3 | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · ((𝐵‘𝑗) − (𝐶‘𝑗))) = (((𝐴‘𝑗) − (𝐶‘𝑗)) · ((𝐵‘𝑖) − (𝐶‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colinearalglem2 27022 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐵‘𝑖)) · ((𝐴‘𝑗) − (𝐵‘𝑗))) = (((𝐶‘𝑗) − (𝐵‘𝑗)) · ((𝐴‘𝑖) − (𝐵‘𝑖))))) | |
2 | colinearalglem2 27022 | . . 3 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐵‘𝑖)) · ((𝐴‘𝑗) − (𝐵‘𝑗))) = (((𝐶‘𝑗) − (𝐵‘𝑗)) · ((𝐴‘𝑖) − (𝐵‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · ((𝐵‘𝑗) − (𝐶‘𝑗))) = (((𝐴‘𝑗) − (𝐶‘𝑗)) · ((𝐵‘𝑖) − (𝐶‘𝑖))))) | |
3 | 2 | 3comr 1127 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐵‘𝑖)) · ((𝐴‘𝑗) − (𝐵‘𝑗))) = (((𝐶‘𝑗) − (𝐵‘𝑗)) · ((𝐴‘𝑖) − (𝐵‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · ((𝐵‘𝑗) − (𝐶‘𝑗))) = (((𝐴‘𝑗) − (𝐶‘𝑗)) · ((𝐵‘𝑖) − (𝐶‘𝑖))))) |
4 | 1, 3 | bitrd 282 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · ((𝐵‘𝑗) − (𝐶‘𝑗))) = (((𝐴‘𝑗) − (𝐶‘𝑗)) · ((𝐵‘𝑖) − (𝐶‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ‘cfv 6397 (class class class)co 7231 1c1 10754 · cmul 10758 − cmin 11086 ...cfz 13119 𝔼cee 27003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-opab 5130 df-mpt 5150 df-id 5469 df-po 5482 df-so 5483 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-ltxr 10896 df-sub 11088 df-neg 11089 df-ee 27006 |
This theorem is referenced by: colinearalg 27025 |
Copyright terms: Public domain | W3C validator |