MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzmmmeqm Structured version   Visualization version   GIF version

Theorem fzmmmeqm 12947
Description: Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
fzmmmeqm (𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))

Proof of Theorem fzmmmeqm
StepHypRef Expression
1 elfz2 12904 . . 3 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
2 zcn 11986 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 zcn 11986 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4 zcn 11986 . . . . . 6 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
52, 3, 43anim123i 1148 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
653comr 1122 . . . 4 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
76adantr 484 . . 3 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
81, 7sylbi 220 . 2 (𝑀 ∈ (𝐿...𝑁) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
9 nnncan2 10922 . 2 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
108, 9syl 17 1 (𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5053  (class class class)co 7150  cc 10534  cle 10675  cmin 10869  cz 11981  ...cfz 12897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-ltxr 10679  df-sub 10871  df-neg 10872  df-z 11982  df-fz 12898
This theorem is referenced by:  swrdccatin2  14094
  Copyright terms: Public domain W3C validator