| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.) |
| Ref | Expression |
|---|---|
| elfz | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1 13529 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 2 | 3anass 1094 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 3 | 2 | baib 535 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 4 | 1, 3 | sylan9bb 509 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 5 | 4 | 3impa 1109 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | 3comr 1125 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ≤ cle 11270 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-neg 11469 df-z 12589 df-fz 13525 |
| This theorem is referenced by: elfz5 13533 fzadd2 13576 fznatpl1 13595 fzrev 13604 fzctr 13657 elfzo 13678 pfxccat3a 14756 isprm3 16702 eulerthlem2 16801 aannenlem1 26288 chtub 27175 bposlem1 27247 2lgslem1a 27354 axlowdimlem3 28923 axlowdimlem7 28927 axlowdimlem16 28936 axlowdimlem17 28937 axlowdim 28940 lmatfvlem 33846 bcneg1 35753 poimirlem15 37659 poimirlem24 37668 poimirlem28 37672 mblfinlem2 37682 fzmul 37765 cntotbnd 37820 sticksstones12 42171 pellexlem5 42856 acongrep 43004 fzneg 43006 stoweidlem26 46055 smfmullem4 46823 |
| Copyright terms: Public domain | W3C validator |