![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.) |
Ref | Expression |
---|---|
elfz | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1 13549 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | 3anass 1094 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
3 | 2 | baib 535 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
4 | 1, 3 | sylan9bb 509 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
5 | 4 | 3impa 1109 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 5 | 3comr 1124 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ≤ cle 11294 ℤcz 12611 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-neg 11493 df-z 12612 df-fz 13545 |
This theorem is referenced by: elfz5 13553 fzadd2 13596 fznatpl1 13615 fzrev 13624 fzctr 13677 elfzo 13698 pfxccat3a 14773 isprm3 16717 eulerthlem2 16816 aannenlem1 26385 chtub 27271 bposlem1 27343 2lgslem1a 27450 axlowdimlem3 28974 axlowdimlem7 28978 axlowdimlem16 28987 axlowdimlem17 28988 axlowdim 28991 lmatfvlem 33776 bcneg1 35716 poimirlem15 37622 poimirlem24 37631 poimirlem28 37635 mblfinlem2 37645 fzmul 37728 cntotbnd 37783 sticksstones12 42140 pellexlem5 42821 acongrep 42969 fzneg 42971 stoweidlem26 45982 smfmullem4 46750 |
Copyright terms: Public domain | W3C validator |