MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz Structured version   Visualization version   GIF version

Theorem elfz 13494
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
elfz ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz
StepHypRef Expression
1 elfz1 13493 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
2 3anass 1093 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
32baib 534 . . . 4 (𝐾 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝑀𝐾𝐾𝑁)))
41, 3sylan9bb 508 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543impa 1108 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
653comr 1123 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085  wcel 2104   class class class wbr 5147  (class class class)co 7411  cle 11253  cz 12562  ...cfz 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-neg 11451  df-z 12563  df-fz 13489
This theorem is referenced by:  elfz5  13497  fzadd2  13540  fznatpl1  13559  fzrev  13568  fzctr  13617  elfzo  13638  pfxccat3a  14692  isprm3  16624  eulerthlem2  16719  aannenlem1  26077  chtub  26951  bposlem1  27023  2lgslem1a  27130  axlowdimlem3  28469  axlowdimlem7  28473  axlowdimlem16  28482  axlowdimlem17  28483  axlowdim  28486  lmatfvlem  33093  bcneg1  35010  poimirlem15  36806  poimirlem24  36815  poimirlem28  36819  mblfinlem2  36829  fzmul  36912  cntotbnd  36967  sticksstones12  41280  pellexlem5  41873  acongrep  42021  fzneg  42023  stoweidlem26  45040  smfmullem4  45808
  Copyright terms: Public domain W3C validator