MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvtri Structured version   Visualization version   GIF version

Theorem nvtri 30606
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvtri.1 𝑋 = (BaseSet‘𝑈)
nvtri.2 𝐺 = ( +𝑣𝑈)
nvtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvtri.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 nvtri.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
3 eqid 2730 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
43smfval 30541 . . . . . . . 8 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
54eqcomi 2739 . . . . . . 7 (2nd ‘(1st𝑈)) = ( ·𝑠OLD𝑈)
6 eqid 2730 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 nvtri.6 . . . . . . 7 𝑁 = (normCV𝑈)
81, 2, 5, 6, 7nvi 30550 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨𝐺, (2nd ‘(1st𝑈))⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
98simp3d 1144 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
10 simp3 1138 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
1110ralimi 3067 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
129, 11syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 fvoveq1 7413 . . . . . 6 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
14 fveq2 6861 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1514oveq1d 7405 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝑦)))
1613, 15breq12d 5123 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦))))
17 oveq2 7398 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1817fveq2d 6865 . . . . . 6 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
19 fveq2 6861 . . . . . . 7 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
2019oveq2d 7406 . . . . . 6 (𝑦 = 𝐵 → ((𝑁𝐴) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝐵)))
2118, 20breq12d 5123 . . . . 5 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2216, 21rspc2v 3602 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2312, 22syl5 34 . . 3 ((𝐴𝑋𝐵𝑋) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
24233impia 1117 . 2 ((𝐴𝑋𝐵𝑋𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
25243comr 1125 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  cle 11216  abscabs 15207  CVecOLDcvc 30494  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  0veccn0v 30524  normCVcnmcv 30526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-1st 7971  df-2nd 7972  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536
This theorem is referenced by:  nvmtri  30607  nvabs  30608  nvge0  30609  imsmetlem  30626  vacn  30630
  Copyright terms: Public domain W3C validator