MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvtri Structured version   Visualization version   GIF version

Theorem nvtri 28453
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvtri.1 𝑋 = (BaseSet‘𝑈)
nvtri.2 𝐺 = ( +𝑣𝑈)
nvtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvtri.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 nvtri.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
3 eqid 2798 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
43smfval 28388 . . . . . . . 8 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
54eqcomi 2807 . . . . . . 7 (2nd ‘(1st𝑈)) = ( ·𝑠OLD𝑈)
6 eqid 2798 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 nvtri.6 . . . . . . 7 𝑁 = (normCV𝑈)
81, 2, 5, 6, 7nvi 28397 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨𝐺, (2nd ‘(1st𝑈))⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
98simp3d 1141 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
10 simp3 1135 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
1110ralimi 3128 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
129, 11syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 fvoveq1 7158 . . . . . 6 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
14 fveq2 6645 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1514oveq1d 7150 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝑦)))
1613, 15breq12d 5043 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦))))
17 oveq2 7143 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1817fveq2d 6649 . . . . . 6 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
19 fveq2 6645 . . . . . . 7 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
2019oveq2d 7151 . . . . . 6 (𝑦 = 𝐵 → ((𝑁𝐴) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝐵)))
2118, 20breq12d 5043 . . . . 5 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2216, 21rspc2v 3581 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2312, 22syl5 34 . . 3 ((𝐴𝑋𝐵𝑋) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
24233impia 1114 . 2 ((𝐴𝑋𝐵𝑋𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
25243comr 1122 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cop 4531   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  cle 10665  abscabs 14585  CVecOLDcvc 28341  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  0veccn0v 28371  normCVcnmcv 28373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-1st 7671  df-2nd 7672  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383
This theorem is referenced by:  nvmtri  28454  nvabs  28455  nvge0  28456  imsmetlem  28473  vacn  28477
  Copyright terms: Public domain W3C validator