MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvtri Structured version   Visualization version   GIF version

Theorem nvtri 29498
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvtri.1 𝑋 = (BaseSet‘𝑈)
nvtri.2 𝐺 = ( +𝑣𝑈)
nvtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvtri.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 nvtri.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
3 eqid 2736 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
43smfval 29433 . . . . . . . 8 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
54eqcomi 2745 . . . . . . 7 (2nd ‘(1st𝑈)) = ( ·𝑠OLD𝑈)
6 eqid 2736 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 nvtri.6 . . . . . . 7 𝑁 = (normCV𝑈)
81, 2, 5, 6, 7nvi 29442 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨𝐺, (2nd ‘(1st𝑈))⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
98simp3d 1144 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
10 simp3 1138 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
1110ralimi 3084 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
129, 11syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 fvoveq1 7376 . . . . . 6 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
14 fveq2 6839 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1514oveq1d 7368 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝑦)))
1613, 15breq12d 5116 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦))))
17 oveq2 7361 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1817fveq2d 6843 . . . . . 6 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
19 fveq2 6839 . . . . . . 7 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
2019oveq2d 7369 . . . . . 6 (𝑦 = 𝐵 → ((𝑁𝐴) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝐵)))
2118, 20breq12d 5116 . . . . 5 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2216, 21rspc2v 3588 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2312, 22syl5 34 . . 3 ((𝐴𝑋𝐵𝑋) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
24233impia 1117 . 2 ((𝐴𝑋𝐵𝑋𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
25243comr 1125 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3062  cop 4590   class class class wbr 5103  wf 6489  cfv 6493  (class class class)co 7353  1st c1st 7915  2nd c2nd 7916  cc 11045  cr 11046  0cc0 11047   + caddc 11050   · cmul 11052  cle 11186  abscabs 15111  CVecOLDcvc 29386  NrmCVeccnv 29412   +𝑣 cpv 29413  BaseSetcba 29414   ·𝑠OLD cns 29415  0veccn0v 29416  normCVcnmcv 29418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7668
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7356  df-oprab 7357  df-1st 7917  df-2nd 7918  df-vc 29387  df-nv 29420  df-va 29423  df-ba 29424  df-sm 29425  df-0v 29426  df-nmcv 29428
This theorem is referenced by:  nvmtri  29499  nvabs  29500  nvge0  29501  imsmetlem  29518  vacn  29522
  Copyright terms: Public domain W3C validator