Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9p1e10 | Structured version Visualization version GIF version |
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
9p1e10 | ⊢ (9 + 1) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12438 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9nn 12071 | . . . . . 6 ⊢ 9 ∈ ℕ | |
3 | 1nn 11984 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | nnaddcl 11996 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 689 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
6 | 5 | nncni 11983 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
7 | 6 | mulid1i 10979 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
8 | 7 | oveq1i 7285 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
9 | 6 | addid1i 11162 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
10 | 1, 8, 9 | 3eqtrri 2771 | 1 ⊢ (9 + 1) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ℕcn 11973 9c9 12035 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 |
This theorem is referenced by: dfdec10 12440 10nn 12453 le9lt10 12464 decsucc 12478 5p5e10 12508 6p4e10 12509 7p3e10 12512 8p2e10 12517 9p2e11 12524 10m1e9 12533 9lt10 12568 sq10e99m1 13979 3dvds 16040 3dvdsdec 16041 3dvds2dec 16042 1259lem2 16833 1259lem3 16834 1259lem4 16835 2503lem2 16839 4001lem1 16842 4001lem2 16843 4001lem4 16845 bposlem4 26435 bposlem5 26436 dp2lt10 31158 1mhdrd 31190 hgt750lem2 32632 60gcd7e1 40013 lcmineqlem23 40059 sqdeccom12 40317 rmydioph 40836 127prm 45051 2exp340mod341 45185 bgoldbtbndlem1 45257 |
Copyright terms: Public domain | W3C validator |