![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9p1e10 | Structured version Visualization version GIF version |
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
9p1e10 | ⊢ (9 + 1) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12683 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9nn 12315 | . . . . . 6 ⊢ 9 ∈ ℕ | |
3 | 1nn 12228 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | nnaddcl 12240 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 689 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
6 | 5 | nncni 12227 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
7 | 6 | mulridi 11223 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
8 | 7 | oveq1i 7422 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
9 | 6 | addridi 11406 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
10 | 1, 8, 9 | 3eqtrri 2764 | 1 ⊢ (9 + 1) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7412 0cc0 11113 1c1 11114 + caddc 11116 · cmul 11118 ℕcn 12217 9c9 12279 ;cdc 12682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-dec 12683 |
This theorem is referenced by: dfdec10 12685 10nn 12698 le9lt10 12709 decsucc 12723 5p5e10 12753 6p4e10 12754 7p3e10 12757 8p2e10 12762 9p2e11 12769 10m1e9 12778 9lt10 12813 sq10e99m1 14230 3dvds 16279 3dvdsdec 16280 3dvds2dec 16281 1259lem2 17070 1259lem3 17071 1259lem4 17072 2503lem2 17076 4001lem1 17079 4001lem2 17080 4001lem4 17082 bposlem4 27027 bposlem5 27028 dp2lt10 32318 1mhdrd 32350 hgt750lem2 33963 60gcd7e1 41177 lcmineqlem23 41223 sqdeccom12 41504 sum9cubes 41717 rmydioph 42056 127prm 46566 2exp340mod341 46700 bgoldbtbndlem1 46772 |
Copyright terms: Public domain | W3C validator |