Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 11816 | . . . . 5 ⊢ 9 ∈ ℂ | |
2 | 10re 12198 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
3 | 2 | recni 10733 | . . . . . 6 ⊢ ;10 ∈ ℂ |
4 | nnnn0 11983 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
5 | expcl 13539 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 590 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
8 | 10pos 12196 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 2, 8 | gt0ne0ii 11254 | . . . . . . 7 ⊢ ;10 ≠ 0 |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
11 | nnz 12085 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 7, 10, 11 | expne0d 13608 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
13 | divrec 11392 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
14 | 1, 6, 12, 13 | mp3an2i 1467 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
15 | 7, 10, 11 | exprecd 13610 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
16 | 15 | oveq2d 7186 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
17 | 14, 16 | eqtr4d 2776 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
18 | 17 | sumeq2i 15149 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
19 | 2, 9 | rereccli 11483 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
20 | 19 | recni 10733 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
21 | 0re 10721 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
22 | 2, 8 | recgt0ii 11624 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
23 | 21, 19, 22 | ltleii 10841 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
24 | 19 | absidi 14827 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
26 | 1lt10 12318 | . . . . . 6 ⊢ 1 < ;10 | |
27 | recgt1 11614 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
28 | 2, 8, 27 | mp2an 692 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
29 | 26, 28 | mpbi 233 | . . . . 5 ⊢ (1 / ;10) < 1 |
30 | 25, 29 | eqbrtri 5051 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
31 | geoisum1c 15328 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
32 | 1, 20, 30, 31 | mp3an 1462 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
33 | 1, 3, 9 | divreci 11463 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
34 | 1, 3, 9 | divcan2i 11461 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
35 | ax-1cn 10673 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
36 | 3, 35, 20 | subdii 11167 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
37 | 3 | mulid1i 10723 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
38 | 3, 9 | recidi 11449 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
39 | 37, 38 | oveq12i 7182 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
40 | 10m1e9 12275 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
41 | 36, 39, 40 | 3eqtrri 2766 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
42 | 34, 41 | eqtri 2761 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
43 | 9re 11815 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
44 | 43, 2, 9 | redivcli 11485 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
45 | 44 | recni 10733 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
46 | 35, 20 | subcli 11040 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
47 | 45, 46, 3, 9 | mulcani 11357 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
48 | 42, 47 | mpbi 233 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
49 | 33, 48 | oveq12i 7182 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
50 | 9pos 11829 | . . . . . 6 ⊢ 0 < 9 | |
51 | 43, 2, 50, 8 | divgt0ii 11635 | . . . . 5 ⊢ 0 < (9 / ;10) |
52 | 44, 51 | gt0ne0ii 11254 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
53 | 45, 52 | dividi 11451 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
54 | 32, 49, 53 | 3eqtr2i 2767 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
55 | 18, 54 | eqtri 2761 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 ℝcr 10614 0cc0 10615 1c1 10616 · cmul 10620 < clt 10753 ≤ cle 10754 − cmin 10948 / cdiv 11375 ℕcn 11716 9c9 11778 ℕ0cn0 11976 ;cdc 12179 ↑cexp 13521 abscabs 14683 Σcsu 15135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-rp 12473 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-rlim 14936 df-sum 15136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |