MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0.999... Structured version   Visualization version   GIF version

Theorem 0.999... 15885
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 12364 . . . . 5 9 ∈ ℂ
2 10re 12748 . . . . . . 7 10 ∈ ℝ
32recni 11278 . . . . . 6 10 ∈ ℂ
4 nnnn0 12531 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5 expcl 14099 . . . . . 6 ((10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℂ)
63, 4, 5sylancr 585 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
73a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
8 10pos 12746 . . . . . . . 8 0 < 10
92, 8gt0ne0ii 11800 . . . . . . 7 10 ≠ 0
109a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ≠ 0)
11 nnz 12631 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
127, 10, 11expne0d 14171 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ≠ 0)
13 divrec 11939 . . . . 5 ((9 ∈ ℂ ∧ (10↑𝑘) ∈ ℂ ∧ (10↑𝑘) ≠ 0) → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
141, 6, 12, 13mp3an2i 1463 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
157, 10, 11exprecd 14173 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1615oveq2d 7440 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1714, 16eqtr4d 2769 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1817sumeq2i 15703 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
192, 9rereccli 12030 . . . . 5 (1 / 10) ∈ ℝ
2019recni 11278 . . . 4 (1 / 10) ∈ ℂ
21 0re 11266 . . . . . . 7 0 ∈ ℝ
222, 8recgt0ii 12172 . . . . . . 7 0 < (1 / 10)
2321, 19, 22ltleii 11387 . . . . . 6 0 ≤ (1 / 10)
2419absidi 15382 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2523, 24ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
26 1lt10 12868 . . . . . 6 1 < 10
27 recgt1 12162 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
282, 8, 27mp2an 690 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2926, 28mpbi 229 . . . . 5 (1 / 10) < 1
3025, 29eqbrtri 5174 . . . 4 (abs‘(1 / 10)) < 1
31 geoisum1c 15884 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
321, 20, 30, 31mp3an 1458 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
331, 3, 9divreci 12010 . . . 4 (9 / 10) = (9 · (1 / 10))
341, 3, 9divcan2i 12008 . . . . . 6 (10 · (9 / 10)) = 9
35 ax-1cn 11216 . . . . . . . 8 1 ∈ ℂ
363, 35, 20subdii 11713 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
373mulridi 11268 . . . . . . . 8 (10 · 1) = 10
383, 9recidi 11996 . . . . . . . 8 (10 · (1 / 10)) = 1
3937, 38oveq12i 7436 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
40 10m1e9 12825 . . . . . . 7 (10 − 1) = 9
4136, 39, 403eqtrri 2759 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4234, 41eqtri 2754 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
43 9re 12363 . . . . . . . 8 9 ∈ ℝ
4443, 2, 9redivcli 12032 . . . . . . 7 (9 / 10) ∈ ℝ
4544recni 11278 . . . . . 6 (9 / 10) ∈ ℂ
4635, 20subcli 11586 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4745, 46, 3, 9mulcani 11903 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4842, 47mpbi 229 . . . 4 (9 / 10) = (1 − (1 / 10))
4933, 48oveq12i 7436 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
50 9pos 12377 . . . . . 6 0 < 9
5143, 2, 50, 8divgt0ii 12183 . . . . 5 0 < (9 / 10)
5244, 51gt0ne0ii 11800 . . . 4 (9 / 10) ≠ 0
5345, 52dividi 11998 . . 3 ((9 / 10) / (9 / 10)) = 1
5432, 49, 533eqtr2i 2760 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5518, 54eqtri 2754 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  9c9 12326  0cn0 12524  cdc 12729  cexp 14081  abscabs 15239  Σcsu 15690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491  df-sum 15691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator