MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0.999... Structured version   Visualization version   GIF version

Theorem 0.999... 15229
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 11725 . . . . 5 9 ∈ ℂ
2 10re 12105 . . . . . . 7 10 ∈ ℝ
32recni 10644 . . . . . 6 10 ∈ ℂ
4 nnnn0 11892 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5 expcl 13443 . . . . . 6 ((10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℂ)
63, 4, 5sylancr 590 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
73a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
8 10pos 12103 . . . . . . . 8 0 < 10
92, 8gt0ne0ii 11165 . . . . . . 7 10 ≠ 0
109a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ≠ 0)
11 nnz 11992 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
127, 10, 11expne0d 13512 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ≠ 0)
13 divrec 11303 . . . . 5 ((9 ∈ ℂ ∧ (10↑𝑘) ∈ ℂ ∧ (10↑𝑘) ≠ 0) → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
141, 6, 12, 13mp3an2i 1463 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
157, 10, 11exprecd 13514 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1615oveq2d 7151 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1714, 16eqtr4d 2836 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1817sumeq2i 15048 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
192, 9rereccli 11394 . . . . 5 (1 / 10) ∈ ℝ
2019recni 10644 . . . 4 (1 / 10) ∈ ℂ
21 0re 10632 . . . . . . 7 0 ∈ ℝ
222, 8recgt0ii 11535 . . . . . . 7 0 < (1 / 10)
2321, 19, 22ltleii 10752 . . . . . 6 0 ≤ (1 / 10)
2419absidi 14729 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2523, 24ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
26 1lt10 12225 . . . . . 6 1 < 10
27 recgt1 11525 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
282, 8, 27mp2an 691 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2926, 28mpbi 233 . . . . 5 (1 / 10) < 1
3025, 29eqbrtri 5051 . . . 4 (abs‘(1 / 10)) < 1
31 geoisum1c 15228 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
321, 20, 30, 31mp3an 1458 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
331, 3, 9divreci 11374 . . . 4 (9 / 10) = (9 · (1 / 10))
341, 3, 9divcan2i 11372 . . . . . 6 (10 · (9 / 10)) = 9
35 ax-1cn 10584 . . . . . . . 8 1 ∈ ℂ
363, 35, 20subdii 11078 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
373mulid1i 10634 . . . . . . . 8 (10 · 1) = 10
383, 9recidi 11360 . . . . . . . 8 (10 · (1 / 10)) = 1
3937, 38oveq12i 7147 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
40 10m1e9 12182 . . . . . . 7 (10 − 1) = 9
4136, 39, 403eqtrri 2826 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4234, 41eqtri 2821 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
43 9re 11724 . . . . . . . 8 9 ∈ ℝ
4443, 2, 9redivcli 11396 . . . . . . 7 (9 / 10) ∈ ℝ
4544recni 10644 . . . . . 6 (9 / 10) ∈ ℂ
4635, 20subcli 10951 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4745, 46, 3, 9mulcani 11268 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4842, 47mpbi 233 . . . 4 (9 / 10) = (1 − (1 / 10))
4933, 48oveq12i 7147 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
50 9pos 11738 . . . . . 6 0 < 9
5143, 2, 50, 8divgt0ii 11546 . . . . 5 0 < (9 / 10)
5244, 51gt0ne0ii 11165 . . . 4 (9 / 10) ≠ 0
5345, 52dividi 11362 . . 3 ((9 / 10) / (9 / 10)) = 1
5432, 49, 533eqtr2i 2827 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5518, 54eqtri 2821 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  9c9 11687  0cn0 11885  cdc 12086  cexp 13425  abscabs 14585  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator