![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 12308 | . . . . 5 ⊢ 9 ∈ ℂ | |
2 | 10re 12692 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
3 | 2 | recni 11224 | . . . . . 6 ⊢ ;10 ∈ ℂ |
4 | nnnn0 12475 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
5 | expcl 14041 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 586 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
8 | 10pos 12690 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 2, 8 | gt0ne0ii 11746 | . . . . . . 7 ⊢ ;10 ≠ 0 |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
11 | nnz 12575 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 7, 10, 11 | expne0d 14113 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
13 | divrec 11884 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
14 | 1, 6, 12, 13 | mp3an2i 1462 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
15 | 7, 10, 11 | exprecd 14115 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
16 | 15 | oveq2d 7417 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
17 | 14, 16 | eqtr4d 2767 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
18 | 17 | sumeq2i 15641 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
19 | 2, 9 | rereccli 11975 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
20 | 19 | recni 11224 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
21 | 0re 11212 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
22 | 2, 8 | recgt0ii 12116 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
23 | 21, 19, 22 | ltleii 11333 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
24 | 19 | absidi 15320 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
26 | 1lt10 12812 | . . . . . 6 ⊢ 1 < ;10 | |
27 | recgt1 12106 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
28 | 2, 8, 27 | mp2an 689 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
29 | 26, 28 | mpbi 229 | . . . . 5 ⊢ (1 / ;10) < 1 |
30 | 25, 29 | eqbrtri 5159 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
31 | geoisum1c 15822 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
32 | 1, 20, 30, 31 | mp3an 1457 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
33 | 1, 3, 9 | divreci 11955 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
34 | 1, 3, 9 | divcan2i 11953 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
35 | ax-1cn 11163 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
36 | 3, 35, 20 | subdii 11659 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
37 | 3 | mulridi 11214 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
38 | 3, 9 | recidi 11941 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
39 | 37, 38 | oveq12i 7413 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
40 | 10m1e9 12769 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
41 | 36, 39, 40 | 3eqtrri 2757 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
42 | 34, 41 | eqtri 2752 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
43 | 9re 12307 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
44 | 43, 2, 9 | redivcli 11977 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
45 | 44 | recni 11224 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
46 | 35, 20 | subcli 11532 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
47 | 45, 46, 3, 9 | mulcani 11849 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
48 | 42, 47 | mpbi 229 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
49 | 33, 48 | oveq12i 7413 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
50 | 9pos 12321 | . . . . . 6 ⊢ 0 < 9 | |
51 | 43, 2, 50, 8 | divgt0ii 12127 | . . . . 5 ⊢ 0 < (9 / ;10) |
52 | 44, 51 | gt0ne0ii 11746 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
53 | 45, 52 | dividi 11943 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
54 | 32, 49, 53 | 3eqtr2i 2758 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
55 | 18, 54 | eqtri 2752 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 ℂcc 11103 ℝcr 11104 0cc0 11105 1c1 11106 · cmul 11110 < clt 11244 ≤ cle 11245 − cmin 11440 / cdiv 11867 ℕcn 12208 9c9 12270 ℕ0cn0 12468 ;cdc 12673 ↑cexp 14023 abscabs 15177 Σcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |