| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 12247 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 2 | 10re 12629 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
| 3 | 2 | recni 11148 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 4 | nnnn0 12410 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 5 | expcl 14005 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 8 | 10pos 12627 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 2, 8 | gt0ne0ii 11675 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
| 11 | nnz 12511 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 7, 10, 11 | expne0d 14078 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
| 13 | divrec 11814 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
| 14 | 1, 6, 12, 13 | mp3an2i 1468 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 15 | 7, 10, 11 | exprecd 14080 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 16 | 15 | oveq2d 7369 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 17 | 14, 16 | eqtr4d 2767 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 18 | 17 | sumeq2i 15624 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 19 | 2, 9 | rereccli 11908 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 20 | 19 | recni 11148 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 21 | 0re 11136 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 22 | 2, 8 | recgt0ii 12050 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 23 | 21, 19, 22 | ltleii 11258 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 24 | 19 | absidi 15304 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 26 | 1lt10 12749 | . . . . . 6 ⊢ 1 < ;10 | |
| 27 | recgt1 12040 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 28 | 2, 8, 27 | mp2an 692 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 29 | 26, 28 | mpbi 230 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 30 | 25, 29 | eqbrtri 5116 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 31 | geoisum1c 15806 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 32 | 1, 20, 30, 31 | mp3an 1463 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 33 | 1, 3, 9 | divreci 11888 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 34 | 1, 3, 9 | divcan2i 11886 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 35 | ax-1cn 11086 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 36 | 3, 35, 20 | subdii 11588 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 37 | 3 | mulridi 11138 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 38 | 3, 9 | recidi 11874 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 39 | 37, 38 | oveq12i 7365 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 40 | 10m1e9 12706 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 41 | 36, 39, 40 | 3eqtrri 2757 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 42 | 34, 41 | eqtri 2752 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 43 | 9re 12246 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 44 | 43, 2, 9 | redivcli 11910 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 45 | 44 | recni 11148 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 46 | 35, 20 | subcli 11459 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 47 | 45, 46, 3, 9 | mulcani 11778 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 48 | 42, 47 | mpbi 230 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 49 | 33, 48 | oveq12i 7365 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 50 | 9pos 12260 | . . . . . 6 ⊢ 0 < 9 | |
| 51 | 43, 2, 50, 8 | divgt0ii 12061 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 52 | 44, 51 | gt0ne0ii 11675 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
| 53 | 45, 52 | dividi 11876 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 54 | 32, 49, 53 | 3eqtr2i 2758 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 55 | 18, 54 | eqtri 2752 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11366 / cdiv 11796 ℕcn 12147 9c9 12209 ℕ0cn0 12403 ;cdc 12610 ↑cexp 13987 abscabs 15160 Σcsu 15612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-fz 13430 df-fzo 13577 df-fl 13715 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-rlim 15415 df-sum 15613 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |