| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 12286 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 2 | 10re 12668 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
| 3 | 2 | recni 11188 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 4 | nnnn0 12449 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 5 | expcl 14044 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 8 | 10pos 12666 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 2, 8 | gt0ne0ii 11714 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
| 11 | nnz 12550 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 7, 10, 11 | expne0d 14117 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
| 13 | divrec 11853 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
| 14 | 1, 6, 12, 13 | mp3an2i 1468 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 15 | 7, 10, 11 | exprecd 14119 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 16 | 15 | oveq2d 7403 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 17 | 14, 16 | eqtr4d 2767 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 18 | 17 | sumeq2i 15664 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 19 | 2, 9 | rereccli 11947 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 20 | 19 | recni 11188 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 21 | 0re 11176 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 22 | 2, 8 | recgt0ii 12089 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 23 | 21, 19, 22 | ltleii 11297 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 24 | 19 | absidi 15344 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 26 | 1lt10 12788 | . . . . . 6 ⊢ 1 < ;10 | |
| 27 | recgt1 12079 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 28 | 2, 8, 27 | mp2an 692 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 29 | 26, 28 | mpbi 230 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 30 | 25, 29 | eqbrtri 5128 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 31 | geoisum1c 15846 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 32 | 1, 20, 30, 31 | mp3an 1463 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 33 | 1, 3, 9 | divreci 11927 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 34 | 1, 3, 9 | divcan2i 11925 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 35 | ax-1cn 11126 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 36 | 3, 35, 20 | subdii 11627 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 37 | 3 | mulridi 11178 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 38 | 3, 9 | recidi 11913 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 39 | 37, 38 | oveq12i 7399 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 40 | 10m1e9 12745 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 41 | 36, 39, 40 | 3eqtrri 2757 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 42 | 34, 41 | eqtri 2752 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 43 | 9re 12285 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 44 | 43, 2, 9 | redivcli 11949 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 45 | 44 | recni 11188 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 46 | 35, 20 | subcli 11498 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 47 | 45, 46, 3, 9 | mulcani 11817 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 48 | 42, 47 | mpbi 230 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 49 | 33, 48 | oveq12i 7399 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 50 | 9pos 12299 | . . . . . 6 ⊢ 0 < 9 | |
| 51 | 43, 2, 50, 8 | divgt0ii 12100 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 52 | 44, 51 | gt0ne0ii 11714 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
| 53 | 45, 52 | dividi 11915 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 54 | 32, 49, 53 | 3eqtr2i 2758 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 55 | 18, 54 | eqtri 2752 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 9c9 12248 ℕ0cn0 12442 ;cdc 12649 ↑cexp 14026 abscabs 15200 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |