| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 12220 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 2 | 10re 12602 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
| 3 | 2 | recni 11121 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 4 | nnnn0 12383 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 5 | expcl 13981 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 8 | 10pos 12600 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 2, 8 | gt0ne0ii 11648 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
| 11 | nnz 12484 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 7, 10, 11 | expne0d 14054 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
| 13 | divrec 11787 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
| 14 | 1, 6, 12, 13 | mp3an2i 1468 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 15 | 7, 10, 11 | exprecd 14056 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 16 | 15 | oveq2d 7357 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 17 | 14, 16 | eqtr4d 2769 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 18 | 17 | sumeq2i 15600 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 19 | 2, 9 | rereccli 11881 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 20 | 19 | recni 11121 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 21 | 0re 11109 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 22 | 2, 8 | recgt0ii 12023 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 23 | 21, 19, 22 | ltleii 11231 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 24 | 19 | absidi 15280 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 26 | 1lt10 12722 | . . . . . 6 ⊢ 1 < ;10 | |
| 27 | recgt1 12013 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 28 | 2, 8, 27 | mp2an 692 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 29 | 26, 28 | mpbi 230 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 30 | 25, 29 | eqbrtri 5107 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 31 | geoisum1c 15782 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 32 | 1, 20, 30, 31 | mp3an 1463 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 33 | 1, 3, 9 | divreci 11861 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 34 | 1, 3, 9 | divcan2i 11859 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 35 | ax-1cn 11059 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 36 | 3, 35, 20 | subdii 11561 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 37 | 3 | mulridi 11111 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 38 | 3, 9 | recidi 11847 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 39 | 37, 38 | oveq12i 7353 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 40 | 10m1e9 12679 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 41 | 36, 39, 40 | 3eqtrri 2759 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 42 | 34, 41 | eqtri 2754 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 43 | 9re 12219 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 44 | 43, 2, 9 | redivcli 11883 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 45 | 44 | recni 11121 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 46 | 35, 20 | subcli 11432 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 47 | 45, 46, 3, 9 | mulcani 11751 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 48 | 42, 47 | mpbi 230 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 49 | 33, 48 | oveq12i 7353 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 50 | 9pos 12233 | . . . . . 6 ⊢ 0 < 9 | |
| 51 | 43, 2, 50, 8 | divgt0ii 12034 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 52 | 44, 51 | gt0ne0ii 11648 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
| 53 | 45, 52 | dividi 11849 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 54 | 32, 49, 53 | 3eqtr2i 2760 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 55 | 18, 54 | eqtri 2754 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 · cmul 11006 < clt 11141 ≤ cle 11142 − cmin 11339 / cdiv 11769 ℕcn 12120 9c9 12182 ℕ0cn0 12376 ;cdc 12583 ↑cexp 13963 abscabs 15136 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |