MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0.999... Structured version   Visualization version   GIF version

Theorem 0.999... 15239
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 11740 . . . . 5 9 ∈ ℂ
2 10re 12120 . . . . . . 7 10 ∈ ℝ
32recni 10657 . . . . . 6 10 ∈ ℂ
4 nnnn0 11907 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5 expcl 13450 . . . . . 6 ((10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℂ)
63, 4, 5sylancr 589 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
73a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
8 10pos 12118 . . . . . . . 8 0 < 10
92, 8gt0ne0ii 11178 . . . . . . 7 10 ≠ 0
109a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ≠ 0)
11 nnz 12007 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
127, 10, 11expne0d 13519 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ≠ 0)
13 divrec 11316 . . . . 5 ((9 ∈ ℂ ∧ (10↑𝑘) ∈ ℂ ∧ (10↑𝑘) ≠ 0) → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
141, 6, 12, 13mp3an2i 1462 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
157, 10, 11exprecd 13521 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1615oveq2d 7174 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1714, 16eqtr4d 2861 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1817sumeq2i 15058 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
192, 9rereccli 11407 . . . . 5 (1 / 10) ∈ ℝ
2019recni 10657 . . . 4 (1 / 10) ∈ ℂ
21 0re 10645 . . . . . . 7 0 ∈ ℝ
222, 8recgt0ii 11548 . . . . . . 7 0 < (1 / 10)
2321, 19, 22ltleii 10765 . . . . . 6 0 ≤ (1 / 10)
2419absidi 14739 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2523, 24ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
26 1lt10 12240 . . . . . 6 1 < 10
27 recgt1 11538 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
282, 8, 27mp2an 690 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2926, 28mpbi 232 . . . . 5 (1 / 10) < 1
3025, 29eqbrtri 5089 . . . 4 (abs‘(1 / 10)) < 1
31 geoisum1c 15238 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
321, 20, 30, 31mp3an 1457 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
331, 3, 9divreci 11387 . . . 4 (9 / 10) = (9 · (1 / 10))
341, 3, 9divcan2i 11385 . . . . . 6 (10 · (9 / 10)) = 9
35 ax-1cn 10597 . . . . . . . 8 1 ∈ ℂ
363, 35, 20subdii 11091 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
373mulid1i 10647 . . . . . . . 8 (10 · 1) = 10
383, 9recidi 11373 . . . . . . . 8 (10 · (1 / 10)) = 1
3937, 38oveq12i 7170 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
40 10m1e9 12197 . . . . . . 7 (10 − 1) = 9
4136, 39, 403eqtrri 2851 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4234, 41eqtri 2846 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
43 9re 11739 . . . . . . . 8 9 ∈ ℝ
4443, 2, 9redivcli 11409 . . . . . . 7 (9 / 10) ∈ ℝ
4544recni 10657 . . . . . 6 (9 / 10) ∈ ℂ
4635, 20subcli 10964 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4745, 46, 3, 9mulcani 11281 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4842, 47mpbi 232 . . . 4 (9 / 10) = (1 − (1 / 10))
4933, 48oveq12i 7170 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
50 9pos 11753 . . . . . 6 0 < 9
5143, 2, 50, 8divgt0ii 11559 . . . . 5 0 < (9 / 10)
5244, 51gt0ne0ii 11178 . . . 4 (9 / 10) ≠ 0
5345, 52dividi 11375 . . 3 ((9 / 10) / (9 / 10)) = 1
5432, 49, 533eqtr2i 2852 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5518, 54eqtri 2846 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  9c9 11702  0cn0 11900  cdc 12101  cexp 13432  abscabs 14595  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator