Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 12003 | . . . . 5 ⊢ 9 ∈ ℂ | |
2 | 10re 12385 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
3 | 2 | recni 10920 | . . . . . 6 ⊢ ;10 ∈ ℂ |
4 | nnnn0 12170 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
5 | expcl 13728 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 586 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
8 | 10pos 12383 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 2, 8 | gt0ne0ii 11441 | . . . . . . 7 ⊢ ;10 ≠ 0 |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
11 | nnz 12272 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 7, 10, 11 | expne0d 13798 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
13 | divrec 11579 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
14 | 1, 6, 12, 13 | mp3an2i 1464 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
15 | 7, 10, 11 | exprecd 13800 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
16 | 15 | oveq2d 7271 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
17 | 14, 16 | eqtr4d 2781 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
18 | 17 | sumeq2i 15339 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
19 | 2, 9 | rereccli 11670 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
20 | 19 | recni 10920 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
21 | 0re 10908 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
22 | 2, 8 | recgt0ii 11811 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
23 | 21, 19, 22 | ltleii 11028 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
24 | 19 | absidi 15017 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
26 | 1lt10 12505 | . . . . . 6 ⊢ 1 < ;10 | |
27 | recgt1 11801 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
28 | 2, 8, 27 | mp2an 688 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
29 | 26, 28 | mpbi 229 | . . . . 5 ⊢ (1 / ;10) < 1 |
30 | 25, 29 | eqbrtri 5091 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
31 | geoisum1c 15520 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
32 | 1, 20, 30, 31 | mp3an 1459 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
33 | 1, 3, 9 | divreci 11650 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
34 | 1, 3, 9 | divcan2i 11648 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
35 | ax-1cn 10860 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
36 | 3, 35, 20 | subdii 11354 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
37 | 3 | mulid1i 10910 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
38 | 3, 9 | recidi 11636 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
39 | 37, 38 | oveq12i 7267 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
40 | 10m1e9 12462 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
41 | 36, 39, 40 | 3eqtrri 2771 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
42 | 34, 41 | eqtri 2766 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
43 | 9re 12002 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
44 | 43, 2, 9 | redivcli 11672 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
45 | 44 | recni 10920 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
46 | 35, 20 | subcli 11227 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
47 | 45, 46, 3, 9 | mulcani 11544 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
48 | 42, 47 | mpbi 229 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
49 | 33, 48 | oveq12i 7267 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
50 | 9pos 12016 | . . . . . 6 ⊢ 0 < 9 | |
51 | 43, 2, 50, 8 | divgt0ii 11822 | . . . . 5 ⊢ 0 < (9 / ;10) |
52 | 44, 51 | gt0ne0ii 11441 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
53 | 45, 52 | dividi 11638 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
54 | 32, 49, 53 | 3eqtr2i 2772 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
55 | 18, 54 | eqtri 2766 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 9c9 11965 ℕ0cn0 12163 ;cdc 12366 ↑cexp 13710 abscabs 14873 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |