![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 12211 | . . . . 5 ⊢ 9 ∈ ℂ | |
2 | 10re 12595 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
3 | 2 | recni 11127 | . . . . . 6 ⊢ ;10 ∈ ℂ |
4 | nnnn0 12378 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
5 | expcl 13939 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
8 | 10pos 12593 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 2, 8 | gt0ne0ii 11649 | . . . . . . 7 ⊢ ;10 ≠ 0 |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
11 | nnz 12478 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 7, 10, 11 | expne0d 14011 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
13 | divrec 11787 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
14 | 1, 6, 12, 13 | mp3an2i 1466 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
15 | 7, 10, 11 | exprecd 14013 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
16 | 15 | oveq2d 7367 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
17 | 14, 16 | eqtr4d 2780 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
18 | 17 | sumeq2i 15544 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
19 | 2, 9 | rereccli 11878 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
20 | 19 | recni 11127 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
21 | 0re 11115 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
22 | 2, 8 | recgt0ii 12019 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
23 | 21, 19, 22 | ltleii 11236 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
24 | 19 | absidi 15222 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
26 | 1lt10 12715 | . . . . . 6 ⊢ 1 < ;10 | |
27 | recgt1 12009 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
28 | 2, 8, 27 | mp2an 690 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
29 | 26, 28 | mpbi 229 | . . . . 5 ⊢ (1 / ;10) < 1 |
30 | 25, 29 | eqbrtri 5124 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
31 | geoisum1c 15725 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
32 | 1, 20, 30, 31 | mp3an 1461 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
33 | 1, 3, 9 | divreci 11858 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
34 | 1, 3, 9 | divcan2i 11856 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
35 | ax-1cn 11067 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
36 | 3, 35, 20 | subdii 11562 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
37 | 3 | mulid1i 11117 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
38 | 3, 9 | recidi 11844 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
39 | 37, 38 | oveq12i 7363 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
40 | 10m1e9 12672 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
41 | 36, 39, 40 | 3eqtrri 2770 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
42 | 34, 41 | eqtri 2765 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
43 | 9re 12210 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
44 | 43, 2, 9 | redivcli 11880 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
45 | 44 | recni 11127 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
46 | 35, 20 | subcli 11435 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
47 | 45, 46, 3, 9 | mulcani 11752 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
48 | 42, 47 | mpbi 229 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
49 | 33, 48 | oveq12i 7363 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
50 | 9pos 12224 | . . . . . 6 ⊢ 0 < 9 | |
51 | 43, 2, 50, 8 | divgt0ii 12030 | . . . . 5 ⊢ 0 < (9 / ;10) |
52 | 44, 51 | gt0ne0ii 11649 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
53 | 45, 52 | dividi 11846 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
54 | 32, 49, 53 | 3eqtr2i 2771 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
55 | 18, 54 | eqtri 2765 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 class class class wbr 5103 ‘cfv 6493 (class class class)co 7351 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 · cmul 11014 < clt 11147 ≤ cle 11148 − cmin 11343 / cdiv 11770 ℕcn 12111 9c9 12173 ℕ0cn0 12371 ;cdc 12576 ↑cexp 13921 abscabs 15079 Σcsu 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-er 8606 df-pm 8726 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-sup 9336 df-inf 9337 df-oi 9404 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-5 12177 df-6 12178 df-7 12179 df-8 12180 df-9 12181 df-n0 12372 df-z 12458 df-dec 12577 df-uz 12722 df-rp 12870 df-fz 13379 df-fzo 13522 df-fl 13651 df-seq 13861 df-exp 13922 df-hash 14185 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 df-clim 15330 df-rlim 15331 df-sum 15531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |