| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version | ||
| Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 12340 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 2 | 10re 12727 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
| 3 | 2 | recni 11249 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 4 | nnnn0 12508 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 5 | expcl 14097 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
| 7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
| 8 | 10pos 12725 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 2, 8 | gt0ne0ii 11773 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
| 11 | nnz 12609 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 12 | 7, 10, 11 | expne0d 14170 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
| 13 | divrec 11912 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
| 14 | 1, 6, 12, 13 | mp3an2i 1468 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 15 | 7, 10, 11 | exprecd 14172 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
| 16 | 15 | oveq2d 7421 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
| 17 | 14, 16 | eqtr4d 2773 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
| 18 | 17 | sumeq2i 15714 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
| 19 | 2, 9 | rereccli 12006 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
| 20 | 19 | recni 11249 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
| 21 | 0re 11237 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 22 | 2, 8 | recgt0ii 12148 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
| 23 | 21, 19, 22 | ltleii 11358 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
| 24 | 19 | absidi 15396 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
| 26 | 1lt10 12847 | . . . . . 6 ⊢ 1 < ;10 | |
| 27 | recgt1 12138 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
| 28 | 2, 8, 27 | mp2an 692 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
| 29 | 26, 28 | mpbi 230 | . . . . 5 ⊢ (1 / ;10) < 1 |
| 30 | 25, 29 | eqbrtri 5140 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
| 31 | geoisum1c 15896 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
| 32 | 1, 20, 30, 31 | mp3an 1463 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 33 | 1, 3, 9 | divreci 11986 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
| 34 | 1, 3, 9 | divcan2i 11984 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
| 35 | ax-1cn 11187 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 36 | 3, 35, 20 | subdii 11686 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
| 37 | 3 | mulridi 11239 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
| 38 | 3, 9 | recidi 11972 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
| 39 | 37, 38 | oveq12i 7417 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
| 40 | 10m1e9 12804 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
| 41 | 36, 39, 40 | 3eqtrri 2763 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
| 42 | 34, 41 | eqtri 2758 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
| 43 | 9re 12339 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
| 44 | 43, 2, 9 | redivcli 12008 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
| 45 | 44 | recni 11249 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
| 46 | 35, 20 | subcli 11559 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
| 47 | 45, 46, 3, 9 | mulcani 11876 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
| 48 | 42, 47 | mpbi 230 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
| 49 | 33, 48 | oveq12i 7417 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
| 50 | 9pos 12353 | . . . . . 6 ⊢ 0 < 9 | |
| 51 | 43, 2, 50, 8 | divgt0ii 12159 | . . . . 5 ⊢ 0 < (9 / ;10) |
| 52 | 44, 51 | gt0ne0ii 11773 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
| 53 | 45, 52 | dividi 11974 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
| 54 | 32, 49, 53 | 3eqtr2i 2764 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
| 55 | 18, 54 | eqtri 2758 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕcn 12240 9c9 12302 ℕ0cn0 12501 ;cdc 12708 ↑cexp 14079 abscabs 15253 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |