Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0.999... | Structured version Visualization version GIF version |
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
0.999... | ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 12073 | . . . . 5 ⊢ 9 ∈ ℂ | |
2 | 10re 12456 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
3 | 2 | recni 10989 | . . . . . 6 ⊢ ;10 ∈ ℂ |
4 | nnnn0 12240 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
5 | expcl 13800 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (;10↑𝑘) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ∈ ℂ) |
7 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ∈ ℂ) |
8 | 10pos 12454 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 2, 8 | gt0ne0ii 11511 | . . . . . . 7 ⊢ ;10 ≠ 0 |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → ;10 ≠ 0) |
11 | nnz 12342 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
12 | 7, 10, 11 | expne0d 13870 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (;10↑𝑘) ≠ 0) |
13 | divrec 11649 | . . . . 5 ⊢ ((9 ∈ ℂ ∧ (;10↑𝑘) ∈ ℂ ∧ (;10↑𝑘) ≠ 0) → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) | |
14 | 1, 6, 12, 13 | mp3an2i 1465 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
15 | 7, 10, 11 | exprecd 13872 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / ;10)↑𝑘) = (1 / (;10↑𝑘))) |
16 | 15 | oveq2d 7291 | . . . 4 ⊢ (𝑘 ∈ ℕ → (9 · ((1 / ;10)↑𝑘)) = (9 · (1 / (;10↑𝑘)))) |
17 | 14, 16 | eqtr4d 2781 | . . 3 ⊢ (𝑘 ∈ ℕ → (9 / (;10↑𝑘)) = (9 · ((1 / ;10)↑𝑘))) |
18 | 17 | sumeq2i 15411 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) |
19 | 2, 9 | rereccli 11740 | . . . . 5 ⊢ (1 / ;10) ∈ ℝ |
20 | 19 | recni 10989 | . . . 4 ⊢ (1 / ;10) ∈ ℂ |
21 | 0re 10977 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
22 | 2, 8 | recgt0ii 11881 | . . . . . . 7 ⊢ 0 < (1 / ;10) |
23 | 21, 19, 22 | ltleii 11098 | . . . . . 6 ⊢ 0 ≤ (1 / ;10) |
24 | 19 | absidi 15089 | . . . . . 6 ⊢ (0 ≤ (1 / ;10) → (abs‘(1 / ;10)) = (1 / ;10)) |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (abs‘(1 / ;10)) = (1 / ;10) |
26 | 1lt10 12576 | . . . . . 6 ⊢ 1 < ;10 | |
27 | recgt1 11871 | . . . . . . 7 ⊢ ((;10 ∈ ℝ ∧ 0 < ;10) → (1 < ;10 ↔ (1 / ;10) < 1)) | |
28 | 2, 8, 27 | mp2an 689 | . . . . . 6 ⊢ (1 < ;10 ↔ (1 / ;10) < 1) |
29 | 26, 28 | mpbi 229 | . . . . 5 ⊢ (1 / ;10) < 1 |
30 | 25, 29 | eqbrtri 5095 | . . . 4 ⊢ (abs‘(1 / ;10)) < 1 |
31 | geoisum1c 15592 | . . . 4 ⊢ ((9 ∈ ℂ ∧ (1 / ;10) ∈ ℂ ∧ (abs‘(1 / ;10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10)))) | |
32 | 1, 20, 30, 31 | mp3an 1460 | . . 3 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
33 | 1, 3, 9 | divreci 11720 | . . . 4 ⊢ (9 / ;10) = (9 · (1 / ;10)) |
34 | 1, 3, 9 | divcan2i 11718 | . . . . . 6 ⊢ (;10 · (9 / ;10)) = 9 |
35 | ax-1cn 10929 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
36 | 3, 35, 20 | subdii 11424 | . . . . . . 7 ⊢ (;10 · (1 − (1 / ;10))) = ((;10 · 1) − (;10 · (1 / ;10))) |
37 | 3 | mulid1i 10979 | . . . . . . . 8 ⊢ (;10 · 1) = ;10 |
38 | 3, 9 | recidi 11706 | . . . . . . . 8 ⊢ (;10 · (1 / ;10)) = 1 |
39 | 37, 38 | oveq12i 7287 | . . . . . . 7 ⊢ ((;10 · 1) − (;10 · (1 / ;10))) = (;10 − 1) |
40 | 10m1e9 12533 | . . . . . . 7 ⊢ (;10 − 1) = 9 | |
41 | 36, 39, 40 | 3eqtrri 2771 | . . . . . 6 ⊢ 9 = (;10 · (1 − (1 / ;10))) |
42 | 34, 41 | eqtri 2766 | . . . . 5 ⊢ (;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) |
43 | 9re 12072 | . . . . . . . 8 ⊢ 9 ∈ ℝ | |
44 | 43, 2, 9 | redivcli 11742 | . . . . . . 7 ⊢ (9 / ;10) ∈ ℝ |
45 | 44 | recni 10989 | . . . . . 6 ⊢ (9 / ;10) ∈ ℂ |
46 | 35, 20 | subcli 11297 | . . . . . 6 ⊢ (1 − (1 / ;10)) ∈ ℂ |
47 | 45, 46, 3, 9 | mulcani 11614 | . . . . 5 ⊢ ((;10 · (9 / ;10)) = (;10 · (1 − (1 / ;10))) ↔ (9 / ;10) = (1 − (1 / ;10))) |
48 | 42, 47 | mpbi 229 | . . . 4 ⊢ (9 / ;10) = (1 − (1 / ;10)) |
49 | 33, 48 | oveq12i 7287 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = ((9 · (1 / ;10)) / (1 − (1 / ;10))) |
50 | 9pos 12086 | . . . . . 6 ⊢ 0 < 9 | |
51 | 43, 2, 50, 8 | divgt0ii 11892 | . . . . 5 ⊢ 0 < (9 / ;10) |
52 | 44, 51 | gt0ne0ii 11511 | . . . 4 ⊢ (9 / ;10) ≠ 0 |
53 | 45, 52 | dividi 11708 | . . 3 ⊢ ((9 / ;10) / (9 / ;10)) = 1 |
54 | 32, 49, 53 | 3eqtr2i 2772 | . 2 ⊢ Σ𝑘 ∈ ℕ (9 · ((1 / ;10)↑𝑘)) = 1 |
55 | 18, 54 | eqtri 2766 | 1 ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 9c9 12035 ℕ0cn0 12233 ;cdc 12437 ↑cexp 13782 abscabs 14945 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |