MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0.999... Structured version   Visualization version   GIF version

Theorem 0.999... 15795
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999... Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 12236 . . . . 5 9 ∈ ℂ
2 10re 12617 . . . . . . 7 10 ∈ ℝ
32recni 11137 . . . . . 6 10 ∈ ℂ
4 nnnn0 12399 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5 expcl 13993 . . . . . 6 ((10 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℂ)
63, 4, 5sylancr 587 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ∈ ℂ)
73a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ∈ ℂ)
8 10pos 12615 . . . . . . . 8 0 < 10
92, 8gt0ne0ii 11664 . . . . . . 7 10 ≠ 0
109a1i 11 . . . . . 6 (𝑘 ∈ ℕ → 10 ≠ 0)
11 nnz 12500 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
127, 10, 11expne0d 14066 . . . . 5 (𝑘 ∈ ℕ → (10↑𝑘) ≠ 0)
13 divrec 11803 . . . . 5 ((9 ∈ ℂ ∧ (10↑𝑘) ∈ ℂ ∧ (10↑𝑘) ≠ 0) → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
141, 6, 12, 13mp3an2i 1468 . . . 4 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · (1 / (10↑𝑘))))
157, 10, 11exprecd 14068 . . . . 5 (𝑘 ∈ ℕ → ((1 / 10)↑𝑘) = (1 / (10↑𝑘)))
1615oveq2d 7371 . . . 4 (𝑘 ∈ ℕ → (9 · ((1 / 10)↑𝑘)) = (9 · (1 / (10↑𝑘))))
1714, 16eqtr4d 2771 . . 3 (𝑘 ∈ ℕ → (9 / (10↑𝑘)) = (9 · ((1 / 10)↑𝑘)))
1817sumeq2i 15612 . 2 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘))
192, 9rereccli 11897 . . . . 5 (1 / 10) ∈ ℝ
2019recni 11137 . . . 4 (1 / 10) ∈ ℂ
21 0re 11125 . . . . . . 7 0 ∈ ℝ
222, 8recgt0ii 12039 . . . . . . 7 0 < (1 / 10)
2321, 19, 22ltleii 11247 . . . . . 6 0 ≤ (1 / 10)
2419absidi 15292 . . . . . 6 (0 ≤ (1 / 10) → (abs‘(1 / 10)) = (1 / 10))
2523, 24ax-mp 5 . . . . 5 (abs‘(1 / 10)) = (1 / 10)
26 1lt10 12737 . . . . . 6 1 < 10
27 recgt1 12029 . . . . . . 7 ((10 ∈ ℝ ∧ 0 < 10) → (1 < 10 ↔ (1 / 10) < 1))
282, 8, 27mp2an 692 . . . . . 6 (1 < 10 ↔ (1 / 10) < 1)
2926, 28mpbi 230 . . . . 5 (1 / 10) < 1
3025, 29eqbrtri 5116 . . . 4 (abs‘(1 / 10)) < 1
31 geoisum1c 15794 . . . 4 ((9 ∈ ℂ ∧ (1 / 10) ∈ ℂ ∧ (abs‘(1 / 10)) < 1) → Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10))))
321, 20, 30, 31mp3an 1463 . . 3 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
331, 3, 9divreci 11877 . . . 4 (9 / 10) = (9 · (1 / 10))
341, 3, 9divcan2i 11875 . . . . . 6 (10 · (9 / 10)) = 9
35 ax-1cn 11075 . . . . . . . 8 1 ∈ ℂ
363, 35, 20subdii 11577 . . . . . . 7 (10 · (1 − (1 / 10))) = ((10 · 1) − (10 · (1 / 10)))
373mulridi 11127 . . . . . . . 8 (10 · 1) = 10
383, 9recidi 11863 . . . . . . . 8 (10 · (1 / 10)) = 1
3937, 38oveq12i 7367 . . . . . . 7 ((10 · 1) − (10 · (1 / 10))) = (10 − 1)
40 10m1e9 12694 . . . . . . 7 (10 − 1) = 9
4136, 39, 403eqtrri 2761 . . . . . 6 9 = (10 · (1 − (1 / 10)))
4234, 41eqtri 2756 . . . . 5 (10 · (9 / 10)) = (10 · (1 − (1 / 10)))
43 9re 12235 . . . . . . . 8 9 ∈ ℝ
4443, 2, 9redivcli 11899 . . . . . . 7 (9 / 10) ∈ ℝ
4544recni 11137 . . . . . 6 (9 / 10) ∈ ℂ
4635, 20subcli 11448 . . . . . 6 (1 − (1 / 10)) ∈ ℂ
4745, 46, 3, 9mulcani 11767 . . . . 5 ((10 · (9 / 10)) = (10 · (1 − (1 / 10))) ↔ (9 / 10) = (1 − (1 / 10)))
4842, 47mpbi 230 . . . 4 (9 / 10) = (1 − (1 / 10))
4933, 48oveq12i 7367 . . 3 ((9 / 10) / (9 / 10)) = ((9 · (1 / 10)) / (1 − (1 / 10)))
50 9pos 12249 . . . . . 6 0 < 9
5143, 2, 50, 8divgt0ii 12050 . . . . 5 0 < (9 / 10)
5244, 51gt0ne0ii 11664 . . . 4 (9 / 10) ≠ 0
5345, 52dividi 11865 . . 3 ((9 / 10) / (9 / 10)) = 1
5432, 49, 533eqtr2i 2762 . 2 Σ𝑘 ∈ ℕ (9 · ((1 / 10)↑𝑘)) = 1
5518, 54eqtri 2756 1 Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   · cmul 11022   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  9c9 12198  0cn0 12392  cdc 12598  cexp 13975  abscabs 15148  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator