![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodnegadd | Structured version Visualization version GIF version |
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodnegadd.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodnegadd.p | ⊢ + = (+g‘𝑊) |
lmodnegadd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodnegadd.n | ⊢ 𝑁 = (invg‘𝑊) |
lmodnegadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lmodnegadd.k | ⊢ 𝐾 = (Base‘𝑅) |
lmodnegadd.i | ⊢ 𝐼 = (invg‘𝑅) |
lmodnegadd.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodnegadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodnegadd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lmodnegadd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodnegadd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodnegadd | ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodnegadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodabl 20933 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Abel) |
4 | lmodnegadd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
5 | lmodnegadd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | lmodnegadd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
7 | lmodnegadd.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
8 | lmodnegadd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lmodnegadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
10 | 6, 7, 8, 9 | lmodvscl 20902 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
11 | 1, 4, 5, 10 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
12 | lmodnegadd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
13 | lmodnegadd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | 6, 7, 8, 9 | lmodvscl 20902 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐵 · 𝑌) ∈ 𝑉) |
15 | 1, 12, 13, 14 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ 𝑉) |
16 | lmodnegadd.p | . . . 4 ⊢ + = (+g‘𝑊) | |
17 | lmodnegadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
18 | 6, 16, 17 | ablinvadd 19849 | . . 3 ⊢ ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
19 | 3, 11, 15, 18 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
20 | lmodnegadd.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 20930 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼‘𝐴) · 𝑋)) |
22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 20930 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼‘𝐵) · 𝑌)) |
23 | 21, 22 | oveq12d 7456 | . 2 ⊢ (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
24 | 19, 23 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 Scalarcsca 17310 ·𝑠 cvsca 17311 invgcminusg 18974 Abelcabl 19823 LModclmod 20884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20886 |
This theorem is referenced by: baerlem3lem1 41704 |
Copyright terms: Public domain | W3C validator |