MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodnegadd Structured version   Visualization version   GIF version

Theorem lmodnegadd 20935
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodnegadd.v 𝑉 = (Base‘𝑊)
lmodnegadd.p + = (+g𝑊)
lmodnegadd.t · = ( ·𝑠𝑊)
lmodnegadd.n 𝑁 = (invg𝑊)
lmodnegadd.r 𝑅 = (Scalar‘𝑊)
lmodnegadd.k 𝐾 = (Base‘𝑅)
lmodnegadd.i 𝐼 = (invg𝑅)
lmodnegadd.w (𝜑𝑊 ∈ LMod)
lmodnegadd.a (𝜑𝐴𝐾)
lmodnegadd.b (𝜑𝐵𝐾)
lmodnegadd.x (𝜑𝑋𝑉)
lmodnegadd.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodnegadd (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))

Proof of Theorem lmodnegadd
StepHypRef Expression
1 lmodnegadd.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodabl 20933 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
31, 2syl 17 . . 3 (𝜑𝑊 ∈ Abel)
4 lmodnegadd.a . . . 4 (𝜑𝐴𝐾)
5 lmodnegadd.x . . . 4 (𝜑𝑋𝑉)
6 lmodnegadd.v . . . . 5 𝑉 = (Base‘𝑊)
7 lmodnegadd.r . . . . 5 𝑅 = (Scalar‘𝑊)
8 lmodnegadd.t . . . . 5 · = ( ·𝑠𝑊)
9 lmodnegadd.k . . . . 5 𝐾 = (Base‘𝑅)
106, 7, 8, 9lmodvscl 20902 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
111, 4, 5, 10syl3anc 1372 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
12 lmodnegadd.b . . . 4 (𝜑𝐵𝐾)
13 lmodnegadd.y . . . 4 (𝜑𝑌𝑉)
146, 7, 8, 9lmodvscl 20902 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
151, 12, 13, 14syl3anc 1372 . . 3 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
16 lmodnegadd.p . . . 4 + = (+g𝑊)
17 lmodnegadd.n . . . 4 𝑁 = (invg𝑊)
186, 16, 17ablinvadd 19849 . . 3 ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))))
193, 11, 15, 18syl3anc 1372 . 2 (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))))
20 lmodnegadd.i . . . 4 𝐼 = (invg𝑅)
216, 7, 8, 17, 9, 20, 1, 5, 4lmodvsneg 20930 . . 3 (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼𝐴) · 𝑋))
226, 7, 8, 17, 9, 20, 1, 13, 12lmodvsneg 20930 . . 3 (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼𝐵) · 𝑌))
2321, 22oveq12d 7456 . 2 (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
2419, 23eqtrd 2777 1 (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  Scalarcsca 17310   ·𝑠 cvsca 17311  invgcminusg 18974  Abelcabl 19823  LModclmod 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20886
This theorem is referenced by:  baerlem3lem1  41704
  Copyright terms: Public domain W3C validator