MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodnegadd Structured version   Visualization version   GIF version

Theorem lmodnegadd 20168
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodnegadd.v 𝑉 = (Base‘𝑊)
lmodnegadd.p + = (+g𝑊)
lmodnegadd.t · = ( ·𝑠𝑊)
lmodnegadd.n 𝑁 = (invg𝑊)
lmodnegadd.r 𝑅 = (Scalar‘𝑊)
lmodnegadd.k 𝐾 = (Base‘𝑅)
lmodnegadd.i 𝐼 = (invg𝑅)
lmodnegadd.w (𝜑𝑊 ∈ LMod)
lmodnegadd.a (𝜑𝐴𝐾)
lmodnegadd.b (𝜑𝐵𝐾)
lmodnegadd.x (𝜑𝑋𝑉)
lmodnegadd.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodnegadd (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))

Proof of Theorem lmodnegadd
StepHypRef Expression
1 lmodnegadd.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodabl 20166 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
31, 2syl 17 . . 3 (𝜑𝑊 ∈ Abel)
4 lmodnegadd.a . . . 4 (𝜑𝐴𝐾)
5 lmodnegadd.x . . . 4 (𝜑𝑋𝑉)
6 lmodnegadd.v . . . . 5 𝑉 = (Base‘𝑊)
7 lmodnegadd.r . . . . 5 𝑅 = (Scalar‘𝑊)
8 lmodnegadd.t . . . . 5 · = ( ·𝑠𝑊)
9 lmodnegadd.k . . . . 5 𝐾 = (Base‘𝑅)
106, 7, 8, 9lmodvscl 20136 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
111, 4, 5, 10syl3anc 1370 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
12 lmodnegadd.b . . . 4 (𝜑𝐵𝐾)
13 lmodnegadd.y . . . 4 (𝜑𝑌𝑉)
146, 7, 8, 9lmodvscl 20136 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
151, 12, 13, 14syl3anc 1370 . . 3 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
16 lmodnegadd.p . . . 4 + = (+g𝑊)
17 lmodnegadd.n . . . 4 𝑁 = (invg𝑊)
186, 16, 17ablinvadd 19407 . . 3 ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))))
193, 11, 15, 18syl3anc 1370 . 2 (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))))
20 lmodnegadd.i . . . 4 𝐼 = (invg𝑅)
216, 7, 8, 17, 9, 20, 1, 5, 4lmodvsneg 20163 . . 3 (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼𝐴) · 𝑋))
226, 7, 8, 17, 9, 20, 1, 13, 12lmodvsneg 20163 . . 3 (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼𝐵) · 𝑌))
2321, 22oveq12d 7287 . 2 (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
2419, 23eqtrd 2780 1 (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cfv 6431  (class class class)co 7269  Basecbs 16908  +gcplusg 16958  Scalarcsca 16961   ·𝑠 cvsca 16962  invgcminusg 18574  Abelcabl 19383  LModclmod 20119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-plusg 16971  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-minusg 18577  df-cmn 19384  df-abl 19385  df-mgp 19717  df-ur 19734  df-ring 19781  df-lmod 20121
This theorem is referenced by:  baerlem3lem1  39715
  Copyright terms: Public domain W3C validator