| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodnegadd | Structured version Visualization version GIF version | ||
| Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodnegadd.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodnegadd.p | ⊢ + = (+g‘𝑊) |
| lmodnegadd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodnegadd.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodnegadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lmodnegadd.k | ⊢ 𝐾 = (Base‘𝑅) |
| lmodnegadd.i | ⊢ 𝐼 = (invg‘𝑅) |
| lmodnegadd.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodnegadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodnegadd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lmodnegadd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodnegadd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodnegadd | ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodnegadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodabl 20821 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 4 | lmodnegadd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 5 | lmodnegadd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | lmodnegadd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | lmodnegadd.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 8 | lmodnegadd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lmodnegadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | 6, 7, 8, 9 | lmodvscl 20790 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 11 | 1, 4, 5, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 12 | lmodnegadd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 13 | lmodnegadd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 14 | 6, 7, 8, 9 | lmodvscl 20790 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐵 · 𝑌) ∈ 𝑉) |
| 15 | 1, 12, 13, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ 𝑉) |
| 16 | lmodnegadd.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 17 | lmodnegadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
| 18 | 6, 16, 17 | ablinvadd 19743 | . . 3 ⊢ ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
| 19 | 3, 11, 15, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
| 20 | lmodnegadd.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
| 21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 20818 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼‘𝐴) · 𝑋)) |
| 22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 20818 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼‘𝐵) · 𝑌)) |
| 23 | 21, 22 | oveq12d 7407 | . 2 ⊢ (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| 24 | 19, 23 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Scalarcsca 17229 ·𝑠 cvsca 17230 invgcminusg 18872 Abelcabl 19717 LModclmod 20772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-lmod 20774 |
| This theorem is referenced by: baerlem3lem1 41696 |
| Copyright terms: Public domain | W3C validator |