Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodnegadd | Structured version Visualization version GIF version |
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodnegadd.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodnegadd.p | ⊢ + = (+g‘𝑊) |
lmodnegadd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodnegadd.n | ⊢ 𝑁 = (invg‘𝑊) |
lmodnegadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lmodnegadd.k | ⊢ 𝐾 = (Base‘𝑅) |
lmodnegadd.i | ⊢ 𝐼 = (invg‘𝑅) |
lmodnegadd.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodnegadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodnegadd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lmodnegadd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodnegadd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodnegadd | ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodnegadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodabl 20085 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Abel) |
4 | lmodnegadd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
5 | lmodnegadd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | lmodnegadd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
7 | lmodnegadd.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
8 | lmodnegadd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lmodnegadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
10 | 6, 7, 8, 9 | lmodvscl 20055 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
11 | 1, 4, 5, 10 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
12 | lmodnegadd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
13 | lmodnegadd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | 6, 7, 8, 9 | lmodvscl 20055 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐵 · 𝑌) ∈ 𝑉) |
15 | 1, 12, 13, 14 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ 𝑉) |
16 | lmodnegadd.p | . . . 4 ⊢ + = (+g‘𝑊) | |
17 | lmodnegadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
18 | 6, 16, 17 | ablinvadd 19326 | . . 3 ⊢ ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
19 | 3, 11, 15, 18 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
20 | lmodnegadd.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 20082 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼‘𝐴) · 𝑋)) |
22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 20082 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼‘𝐵) · 𝑌)) |
23 | 21, 22 | oveq12d 7273 | . 2 ⊢ (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
24 | 19, 23 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 invgcminusg 18493 Abelcabl 19302 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 |
This theorem is referenced by: baerlem3lem1 39648 |
Copyright terms: Public domain | W3C validator |