![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodnegadd | Structured version Visualization version GIF version |
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodnegadd.v | β’ π = (Baseβπ) |
lmodnegadd.p | β’ + = (+gβπ) |
lmodnegadd.t | β’ Β· = ( Β·π βπ) |
lmodnegadd.n | β’ π = (invgβπ) |
lmodnegadd.r | β’ π = (Scalarβπ) |
lmodnegadd.k | β’ πΎ = (Baseβπ ) |
lmodnegadd.i | β’ πΌ = (invgβπ ) |
lmodnegadd.w | β’ (π β π β LMod) |
lmodnegadd.a | β’ (π β π΄ β πΎ) |
lmodnegadd.b | β’ (π β π΅ β πΎ) |
lmodnegadd.x | β’ (π β π β π) |
lmodnegadd.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lmodnegadd | β’ (π β (πβ((π΄ Β· π) + (π΅ Β· π))) = (((πΌβπ΄) Β· π) + ((πΌβπ΅) Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodnegadd.w | . . . 4 β’ (π β π β LMod) | |
2 | lmodabl 20745 | . . . 4 β’ (π β LMod β π β Abel) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β π β Abel) |
4 | lmodnegadd.a | . . . 4 β’ (π β π΄ β πΎ) | |
5 | lmodnegadd.x | . . . 4 β’ (π β π β π) | |
6 | lmodnegadd.v | . . . . 5 β’ π = (Baseβπ) | |
7 | lmodnegadd.r | . . . . 5 β’ π = (Scalarβπ) | |
8 | lmodnegadd.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
9 | lmodnegadd.k | . . . . 5 β’ πΎ = (Baseβπ ) | |
10 | 6, 7, 8, 9 | lmodvscl 20714 | . . . 4 β’ ((π β LMod β§ π΄ β πΎ β§ π β π) β (π΄ Β· π) β π) |
11 | 1, 4, 5, 10 | syl3anc 1368 | . . 3 β’ (π β (π΄ Β· π) β π) |
12 | lmodnegadd.b | . . . 4 β’ (π β π΅ β πΎ) | |
13 | lmodnegadd.y | . . . 4 β’ (π β π β π) | |
14 | 6, 7, 8, 9 | lmodvscl 20714 | . . . 4 β’ ((π β LMod β§ π΅ β πΎ β§ π β π) β (π΅ Β· π) β π) |
15 | 1, 12, 13, 14 | syl3anc 1368 | . . 3 β’ (π β (π΅ Β· π) β π) |
16 | lmodnegadd.p | . . . 4 β’ + = (+gβπ) | |
17 | lmodnegadd.n | . . . 4 β’ π = (invgβπ) | |
18 | 6, 16, 17 | ablinvadd 19717 | . . 3 β’ ((π β Abel β§ (π΄ Β· π) β π β§ (π΅ Β· π) β π) β (πβ((π΄ Β· π) + (π΅ Β· π))) = ((πβ(π΄ Β· π)) + (πβ(π΅ Β· π)))) |
19 | 3, 11, 15, 18 | syl3anc 1368 | . 2 β’ (π β (πβ((π΄ Β· π) + (π΅ Β· π))) = ((πβ(π΄ Β· π)) + (πβ(π΅ Β· π)))) |
20 | lmodnegadd.i | . . . 4 β’ πΌ = (invgβπ ) | |
21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 20742 | . . 3 β’ (π β (πβ(π΄ Β· π)) = ((πΌβπ΄) Β· π)) |
22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 20742 | . . 3 β’ (π β (πβ(π΅ Β· π)) = ((πΌβπ΅) Β· π)) |
23 | 21, 22 | oveq12d 7419 | . 2 β’ (π β ((πβ(π΄ Β· π)) + (πβ(π΅ Β· π))) = (((πΌβπ΄) Β· π) + ((πΌβπ΅) Β· π))) |
24 | 19, 23 | eqtrd 2764 | 1 β’ (π β (πβ((π΄ Β· π) + (π΅ Β· π))) = (((πΌβπ΄) Β· π) + ((πΌβπ΅) Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6533 (class class class)co 7401 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 Β·π cvsca 17200 invgcminusg 18854 Abelcabl 19691 LModclmod 20696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-lmod 20698 |
This theorem is referenced by: baerlem3lem1 41068 |
Copyright terms: Public domain | W3C validator |