MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnnncan1 Structured version   Visualization version   GIF version

Theorem ablnnncan1 19780
Description: Cancellation law for group subtraction. (nnncan1 11524 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))

Proof of Theorem ablnnncan1
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 ablnncan.m . . 3 = (-g𝐺)
3 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
4 ablnncan.x . . 3 (𝜑𝑋𝐵)
5 ablnncan.y . . 3 (𝜑𝑌𝐵)
6 ablgrp 19742 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablsub32.z . . . 4 (𝜑𝑍𝐵)
91, 2grpsubcl 18978 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
107, 4, 8, 9syl3anc 1368 . . 3 (𝜑 → (𝑋 𝑍) ∈ 𝐵)
111, 2, 3, 4, 5, 10ablsub32 19778 . 2 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = ((𝑋 (𝑋 𝑍)) 𝑌))
121, 2, 3, 4, 8ablnncan 19777 . . 3 (𝜑 → (𝑋 (𝑋 𝑍)) = 𝑍)
1312oveq1d 7430 . 2 (𝜑 → ((𝑋 (𝑋 𝑍)) 𝑌) = (𝑍 𝑌))
1411, 13eqtrd 2765 1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6542  (class class class)co 7415  Basecbs 17177  Grpcgrp 18892  -gcsg 18894  Abelcabl 19738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-0g 17420  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-grp 18895  df-minusg 18896  df-sbg 18897  df-cmn 19739  df-abl 19740
This theorem is referenced by:  minveclem2  25370  ply1divmo  26087  baerlem3lem2  41238
  Copyright terms: Public domain W3C validator