Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablnnncan1 | Structured version Visualization version GIF version |
Description: Cancellation law for group subtraction. (nnncan1 11268 analog.) (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnnncan1 | ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
4 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablnncan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablgrp 19402 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
9 | 1, 2 | grpsubcl 18666 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) ∈ 𝐵) |
10 | 7, 4, 8, 9 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) ∈ 𝐵) |
11 | 1, 2, 3, 4, 5, 10 | ablsub32 19434 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = ((𝑋 − (𝑋 − 𝑍)) − 𝑌)) |
12 | 1, 2, 3, 4, 8 | ablnncan 19433 | . . 3 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑍)) = 𝑍) |
13 | 12 | oveq1d 7287 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑋 − 𝑍)) − 𝑌) = (𝑍 − 𝑌)) |
14 | 11, 13 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 Grpcgrp 18588 -gcsg 18590 Abelcabl 19398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-0g 17163 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-grp 18591 df-minusg 18592 df-sbg 18593 df-cmn 19399 df-abl 19400 |
This theorem is referenced by: minveclem2 24601 ply1divmo 25311 baerlem3lem2 39733 |
Copyright terms: Public domain | W3C validator |