MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpnpcan Structured version   Visualization version   GIF version

Theorem ablpnpcan 19365
Description: Cancellation law for mixed addition and subtraction. (pnpcan 11206 analog.) (Contributed by NM, 29-May-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
ablpnpcan.g (𝜑𝐺 ∈ Abel)
ablpnpcan.x (𝜑𝑋𝐵)
ablpnpcan.y (𝜑𝑌𝐵)
ablpnpcan.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablpnpcan (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = (𝑌 𝑍))

Proof of Theorem ablpnpcan
StepHypRef Expression
1 ablsubsub.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablsubsub.x . . 3 (𝜑𝑋𝐵)
3 ablsubsub.y . . 3 (𝜑𝑌𝐵)
4 ablsubsub.z . . 3 (𝜑𝑍𝐵)
5 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . 4 + = (+g𝐺)
7 ablsubadd.m . . . 4 = (-g𝐺)
85, 6, 7ablsub4 19358 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋𝐵𝑍𝐵)) → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = ((𝑋 𝑋) + (𝑌 𝑍)))
91, 2, 3, 2, 4, 8syl122anc 1377 . 2 (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = ((𝑋 𝑋) + (𝑌 𝑍)))
10 ablgrp 19335 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
111, 10syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
12 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
135, 12, 7grpsubid 18603 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
1411, 2, 13syl2anc 583 . . 3 (𝜑 → (𝑋 𝑋) = (0g𝐺))
1514oveq1d 7275 . 2 (𝜑 → ((𝑋 𝑋) + (𝑌 𝑍)) = ((0g𝐺) + (𝑌 𝑍)))
165, 7grpsubcl 18599 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
1711, 3, 4, 16syl3anc 1369 . . 3 (𝜑 → (𝑌 𝑍) ∈ 𝐵)
185, 6, 12grplid 18553 . . 3 ((𝐺 ∈ Grp ∧ (𝑌 𝑍) ∈ 𝐵) → ((0g𝐺) + (𝑌 𝑍)) = (𝑌 𝑍))
1911, 17, 18syl2anc 583 . 2 (𝜑 → ((0g𝐺) + (𝑌 𝑍)) = (𝑌 𝑍))
209, 15, 193eqtrd 2781 1 (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6423  (class class class)co 7260  Basecbs 16856  +gcplusg 16906  0gc0g 17094  Grpcgrp 18521  -gcsg 18523  Abelcabl 19331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-1st 7809  df-2nd 7810  df-0g 17096  df-mgm 18270  df-sgrp 18319  df-mnd 18330  df-grp 18524  df-minusg 18525  df-sbg 18526  df-cmn 19332  df-abl 19333
This theorem is referenced by:  hdmaprnlem7N  39838
  Copyright terms: Public domain W3C validator