MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpnpcan Structured version   Visualization version   GIF version

Theorem ablpnpcan 19805
Description: Cancellation law for mixed addition and subtraction. (pnpcan 11527 analog.) (Contributed by NM, 29-May-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
ablpnpcan.g (𝜑𝐺 ∈ Abel)
ablpnpcan.x (𝜑𝑋𝐵)
ablpnpcan.y (𝜑𝑌𝐵)
ablpnpcan.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablpnpcan (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = (𝑌 𝑍))

Proof of Theorem ablpnpcan
StepHypRef Expression
1 ablsubsub.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablsubsub.x . . 3 (𝜑𝑋𝐵)
3 ablsubsub.y . . 3 (𝜑𝑌𝐵)
4 ablsubsub.z . . 3 (𝜑𝑍𝐵)
5 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . 4 + = (+g𝐺)
7 ablsubadd.m . . . 4 = (-g𝐺)
85, 6, 7ablsub4 19796 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋𝐵𝑍𝐵)) → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = ((𝑋 𝑋) + (𝑌 𝑍)))
91, 2, 3, 2, 4, 8syl122anc 1381 . 2 (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = ((𝑋 𝑋) + (𝑌 𝑍)))
10 ablgrp 19771 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
111, 10syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
12 eqid 2736 . . . . 5 (0g𝐺) = (0g𝐺)
135, 12, 7grpsubid 19012 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
1411, 2, 13syl2anc 584 . . 3 (𝜑 → (𝑋 𝑋) = (0g𝐺))
1514oveq1d 7425 . 2 (𝜑 → ((𝑋 𝑋) + (𝑌 𝑍)) = ((0g𝐺) + (𝑌 𝑍)))
165, 7grpsubcl 19008 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
1711, 3, 4, 16syl3anc 1373 . . 3 (𝜑 → (𝑌 𝑍) ∈ 𝐵)
185, 6, 12grplid 18955 . . 3 ((𝐺 ∈ Grp ∧ (𝑌 𝑍) ∈ 𝐵) → ((0g𝐺) + (𝑌 𝑍)) = (𝑌 𝑍))
1911, 17, 18syl2anc 584 . 2 (𝜑 → ((0g𝐺) + (𝑌 𝑍)) = (𝑌 𝑍))
209, 15, 193eqtrd 2775 1 (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Grpcgrp 18921  -gcsg 18923  Abelcabl 19767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-cmn 19768  df-abl 19769
This theorem is referenced by:  hdmaprnlem7N  41879
  Copyright terms: Public domain W3C validator