| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablpnpcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for mixed addition and subtraction. (pnpcan 11409 analog.) (Contributed by NM, 29-May-2015.) |
| Ref | Expression |
|---|---|
| ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsubadd.p | ⊢ + = (+g‘𝐺) |
| ablsubadd.m | ⊢ − = (-g‘𝐺) |
| ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ablpnpcan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablpnpcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablpnpcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablpnpcan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablpnpcan | ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubsub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 5, 6, 7 | ablsub4 19726 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
| 9 | 1, 2, 3, 2, 4, 8 | syl122anc 1381 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
| 10 | ablgrp 19701 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 12 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 13 | 5, 12, 7 | grpsubid 18941 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 14 | 11, 2, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 15 | 14 | oveq1d 7369 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋) + (𝑌 − 𝑍)) = ((0g‘𝐺) + (𝑌 − 𝑍))) |
| 16 | 5, 7 | grpsubcl 18937 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
| 17 | 11, 3, 4, 16 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
| 18 | 5, 6, 12 | grplid 18884 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑌 − 𝑍) ∈ 𝐵) → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
| 19 | 11, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
| 20 | 9, 15, 19 | 3eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 0gc0g 17347 Grpcgrp 18850 -gcsg 18852 Abelcabl 19697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-cmn 19698 df-abl 19699 |
| This theorem is referenced by: hdmaprnlem7N 41977 |
| Copyright terms: Public domain | W3C validator |