| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablpnpcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for mixed addition and subtraction. (pnpcan 11461 analog.) (Contributed by NM, 29-May-2015.) |
| Ref | Expression |
|---|---|
| ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsubadd.p | ⊢ + = (+g‘𝐺) |
| ablsubadd.m | ⊢ − = (-g‘𝐺) |
| ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ablpnpcan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablpnpcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablpnpcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablpnpcan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablpnpcan | ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubsub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 5, 6, 7 | ablsub4 19740 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
| 9 | 1, 2, 3, 2, 4, 8 | syl122anc 1381 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
| 10 | ablgrp 19715 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 12 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 13 | 5, 12, 7 | grpsubid 18956 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 14 | 11, 2, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 15 | 14 | oveq1d 7402 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋) + (𝑌 − 𝑍)) = ((0g‘𝐺) + (𝑌 − 𝑍))) |
| 16 | 5, 7 | grpsubcl 18952 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
| 17 | 11, 3, 4, 16 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
| 18 | 5, 6, 12 | grplid 18899 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑌 − 𝑍) ∈ 𝐵) → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
| 19 | 11, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
| 20 | 9, 15, 19 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 -gcsg 18867 Abelcabl 19711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 |
| This theorem is referenced by: hdmaprnlem7N 41849 |
| Copyright terms: Public domain | W3C validator |