Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablpnpcan | Structured version Visualization version GIF version |
Description: Cancellation law for mixed addition and subtraction. (pnpcan 11206 analog.) (Contributed by NM, 29-May-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ablpnpcan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablpnpcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablpnpcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablpnpcan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablpnpcan | ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubsub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
7 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
8 | 5, 6, 7 | ablsub4 19358 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
9 | 1, 2, 3, 2, 4, 8 | syl122anc 1377 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
10 | ablgrp 19335 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
12 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
13 | 5, 12, 7 | grpsubid 18603 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
14 | 11, 2, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
15 | 14 | oveq1d 7275 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋) + (𝑌 − 𝑍)) = ((0g‘𝐺) + (𝑌 − 𝑍))) |
16 | 5, 7 | grpsubcl 18599 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
17 | 11, 3, 4, 16 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
18 | 5, 6, 12 | grplid 18553 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑌 − 𝑍) ∈ 𝐵) → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
19 | 11, 17, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
20 | 9, 15, 19 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6423 (class class class)co 7260 Basecbs 16856 +gcplusg 16906 0gc0g 17094 Grpcgrp 18521 -gcsg 18523 Abelcabl 19331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-1st 7809 df-2nd 7810 df-0g 17096 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-grp 18524 df-minusg 18525 df-sbg 18526 df-cmn 19332 df-abl 19333 |
This theorem is referenced by: hdmaprnlem7N 39838 |
Copyright terms: Public domain | W3C validator |