Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem7N Structured version   Visualization version   GIF version

Theorem hdmaprnlem7N 41874
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem7N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))

Proof of Theorem hdmaprnlem7N
StepHypRef Expression
1 hdmaprnlem1.d . . 3 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.a . . 3 = (+g𝐶)
3 eqid 2735 . . 3 (-g𝐶) = (-g𝐶)
4 hdmaprnlem1.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 hdmaprnlem1.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 41611 . . . 4 (𝜑𝐶 ∈ LMod)
8 lmodabl 20866 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Abel)
97, 8syl 17 . . 3 (𝜑𝐶 ∈ Abel)
10 hdmaprnlem1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmaprnlem1.v . . . 4 𝑉 = (Base‘𝑈)
12 hdmaprnlem1.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmaprnlem1.ue . . . 4 (𝜑𝑢𝑉)
144, 10, 11, 5, 1, 12, 6, 13hdmapcl 41849 . . 3 (𝜑 → (𝑆𝑢) ∈ 𝐷)
15 hdmaprnlem1.se . . . 4 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1615eldifad 3938 . . 3 (𝜑𝑠𝐷)
17 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
18 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
19 hdmaprnlem1.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
20 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
21 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
22 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
23 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
24 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
25 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
264, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25hdmaprnlem4tN 41871 . . . 4 (𝜑𝑡𝑉)
274, 10, 11, 5, 1, 12, 6, 26hdmapcl 41849 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
281, 2, 3, 9, 14, 16, 27, 9, 14, 16, 27ablpnpcan 19800 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) = (𝑠(-g𝐶)(𝑆𝑡)))
291, 2lmodvacl 20832 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
307, 14, 16, 29syl3anc 1373 . . . 4 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
31 eqid 2735 . . . . 5 (LSubSp‘𝐶) = (LSubSp‘𝐶)
321, 31, 18lspsncl 20934 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
337, 30, 32syl2anc 584 . . 3 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
341, 18lspsnid 20950 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
357, 30, 34syl2anc 584 . . 3 (𝜑 → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
361, 2lmodvacl 20832 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
377, 14, 27, 36syl3anc 1373 . . . . 5 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
381, 18lspsnid 20950 . . . . 5 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
397, 37, 38syl2anc 584 . . . 4 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
40 hdmaprnlem1.p . . . . 5 + = (+g𝑈)
41 hdmaprnlem1.pt . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
424, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25, 40, 41hdmaprnlem6N 41873 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
4339, 42eleqtrrd 2837 . . 3 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
443, 31lssvsubcl 20901 . . 3 (((𝐶 ∈ LMod ∧ (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶)) ∧ (((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}) ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))) → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
457, 33, 35, 43, 44syl22anc 838 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
4628, 45eqeltrrd 2835 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  -gcsg 18918  Abelcabl 19762  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928  HLchlt 39368  LHypclh 40003  DVecHcdvh 41097  LCDualclcd 41605  mapdcmpd 41643  HDMapchdma 41811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-nzr 20473  df-rlreg 20654  df-domn 20655  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lsatoms 38994  df-lshyp 38995  df-lcv 39037  df-lfl 39076  df-lkr 39104  df-ldual 39142  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tgrp 40762  df-tendo 40774  df-edring 40776  df-dveca 41022  df-disoa 41048  df-dvech 41098  df-dib 41158  df-dic 41192  df-dih 41248  df-doch 41367  df-djh 41414  df-lcdual 41606  df-mapd 41644  df-hvmap 41776  df-hdmap1 41812  df-hdmap 41813
This theorem is referenced by:  hdmaprnlem9N  41876
  Copyright terms: Public domain W3C validator