Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem7N Structured version   Visualization version   GIF version

Theorem hdmaprnlem7N 41838
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem7N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))

Proof of Theorem hdmaprnlem7N
StepHypRef Expression
1 hdmaprnlem1.d . . 3 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.a . . 3 = (+g𝐶)
3 eqid 2735 . . 3 (-g𝐶) = (-g𝐶)
4 hdmaprnlem1.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 hdmaprnlem1.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 41575 . . . 4 (𝜑𝐶 ∈ LMod)
8 lmodabl 20924 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Abel)
97, 8syl 17 . . 3 (𝜑𝐶 ∈ Abel)
10 hdmaprnlem1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmaprnlem1.v . . . 4 𝑉 = (Base‘𝑈)
12 hdmaprnlem1.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmaprnlem1.ue . . . 4 (𝜑𝑢𝑉)
144, 10, 11, 5, 1, 12, 6, 13hdmapcl 41813 . . 3 (𝜑 → (𝑆𝑢) ∈ 𝐷)
15 hdmaprnlem1.se . . . 4 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1615eldifad 3975 . . 3 (𝜑𝑠𝐷)
17 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
18 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
19 hdmaprnlem1.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
20 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
21 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
22 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
23 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
24 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
25 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
264, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25hdmaprnlem4tN 41835 . . . 4 (𝜑𝑡𝑉)
274, 10, 11, 5, 1, 12, 6, 26hdmapcl 41813 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
281, 2, 3, 9, 14, 16, 27, 9, 14, 16, 27ablpnpcan 19852 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) = (𝑠(-g𝐶)(𝑆𝑡)))
291, 2lmodvacl 20890 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
307, 14, 16, 29syl3anc 1370 . . . 4 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
31 eqid 2735 . . . . 5 (LSubSp‘𝐶) = (LSubSp‘𝐶)
321, 31, 18lspsncl 20993 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
337, 30, 32syl2anc 584 . . 3 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
341, 18lspsnid 21009 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
357, 30, 34syl2anc 584 . . 3 (𝜑 → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
361, 2lmodvacl 20890 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
377, 14, 27, 36syl3anc 1370 . . . . 5 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
381, 18lspsnid 21009 . . . . 5 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
397, 37, 38syl2anc 584 . . . 4 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
40 hdmaprnlem1.p . . . . 5 + = (+g𝑈)
41 hdmaprnlem1.pt . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
424, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25, 40, 41hdmaprnlem6N 41837 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
4339, 42eleqtrrd 2842 . . 3 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
443, 31lssvsubcl 20960 . . 3 (((𝐶 ∈ LMod ∧ (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶)) ∧ (((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}) ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))) → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
457, 33, 35, 43, 44syl22anc 839 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
4628, 45eqeltrrd 2840 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  -gcsg 18966  Abelcabl 19814  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  mapdcmpd 41607  HDMapchdma 41775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608  df-hvmap 41740  df-hdmap1 41776  df-hdmap 41777
This theorem is referenced by:  hdmaprnlem9N  41840
  Copyright terms: Public domain W3C validator