Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem7N Structured version   Visualization version   GIF version

Theorem hdmaprnlem7N 40081
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem7N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))

Proof of Theorem hdmaprnlem7N
StepHypRef Expression
1 hdmaprnlem1.d . . 3 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.a . . 3 = (+g𝐶)
3 eqid 2737 . . 3 (-g𝐶) = (-g𝐶)
4 hdmaprnlem1.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 hdmaprnlem1.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 39818 . . . 4 (𝜑𝐶 ∈ LMod)
8 lmodabl 20241 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Abel)
97, 8syl 17 . . 3 (𝜑𝐶 ∈ Abel)
10 hdmaprnlem1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmaprnlem1.v . . . 4 𝑉 = (Base‘𝑈)
12 hdmaprnlem1.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmaprnlem1.ue . . . 4 (𝜑𝑢𝑉)
144, 10, 11, 5, 1, 12, 6, 13hdmapcl 40056 . . 3 (𝜑 → (𝑆𝑢) ∈ 𝐷)
15 hdmaprnlem1.se . . . 4 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1615eldifad 3908 . . 3 (𝜑𝑠𝐷)
17 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
18 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
19 hdmaprnlem1.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
20 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
21 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
22 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
23 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
24 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
25 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
264, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25hdmaprnlem4tN 40078 . . . 4 (𝜑𝑡𝑉)
274, 10, 11, 5, 1, 12, 6, 26hdmapcl 40056 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
281, 2, 3, 9, 14, 16, 27, 9, 14, 16, 27ablpnpcan 19488 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) = (𝑠(-g𝐶)(𝑆𝑡)))
291, 2lmodvacl 20208 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
307, 14, 16, 29syl3anc 1370 . . . 4 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
31 eqid 2737 . . . . 5 (LSubSp‘𝐶) = (LSubSp‘𝐶)
321, 31, 18lspsncl 20310 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
337, 30, 32syl2anc 584 . . 3 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
341, 18lspsnid 20326 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
357, 30, 34syl2anc 584 . . 3 (𝜑 → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
361, 2lmodvacl 20208 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
377, 14, 27, 36syl3anc 1370 . . . . 5 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
381, 18lspsnid 20326 . . . . 5 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
397, 37, 38syl2anc 584 . . . 4 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
40 hdmaprnlem1.p . . . . 5 + = (+g𝑈)
41 hdmaprnlem1.pt . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
424, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25, 40, 41hdmaprnlem6N 40080 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
4339, 42eleqtrrd 2841 . . 3 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
443, 31lssvsubcl 20276 . . 3 (((𝐶 ∈ LMod ∧ (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶)) ∧ (((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}) ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))) → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
457, 33, 35, 43, 44syl22anc 836 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
4628, 45eqeltrrd 2839 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  cdif 3893  {csn 4569  cfv 6463  (class class class)co 7313  Basecbs 16979  +gcplusg 17029  0gc0g 17217  -gcsg 18646  Abelcabl 19454  LModclmod 20194  LSubSpclss 20264  LSpanclspn 20304  HLchlt 37576  LHypclh 38210  DVecHcdvh 39304  LCDualclcd 39812  mapdcmpd 39850  HDMapchdma 40018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-riotaBAD 37179
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-om 7756  df-1st 7874  df-2nd 7875  df-tpos 8087  df-undef 8134  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-map 8663  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-n0 12304  df-z 12390  df-uz 12653  df-fz 13310  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-sca 17045  df-vsca 17046  df-0g 17219  df-mre 17362  df-mrc 17363  df-acs 17365  df-proset 18080  df-poset 18098  df-plt 18115  df-lub 18131  df-glb 18132  df-join 18133  df-meet 18134  df-p0 18210  df-p1 18211  df-lat 18217  df-clat 18284  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-submnd 18498  df-grp 18647  df-minusg 18648  df-sbg 18649  df-subg 18819  df-cntz 18990  df-oppg 19017  df-lsm 19308  df-cmn 19455  df-abl 19456  df-mgp 19788  df-ur 19805  df-ring 19852  df-oppr 19929  df-dvdsr 19950  df-unit 19951  df-invr 19981  df-dvr 19992  df-drng 20064  df-lmod 20196  df-lss 20265  df-lsp 20305  df-lvec 20436  df-lsatoms 37202  df-lshyp 37203  df-lcv 37245  df-lfl 37284  df-lkr 37312  df-ldual 37350  df-oposet 37402  df-ol 37404  df-oml 37405  df-covers 37492  df-ats 37493  df-atl 37524  df-cvlat 37548  df-hlat 37577  df-llines 37724  df-lplanes 37725  df-lvols 37726  df-lines 37727  df-psubsp 37729  df-pmap 37730  df-padd 38022  df-lhyp 38214  df-laut 38215  df-ldil 38330  df-ltrn 38331  df-trl 38385  df-tgrp 38969  df-tendo 38981  df-edring 38983  df-dveca 39229  df-disoa 39255  df-dvech 39305  df-dib 39365  df-dic 39399  df-dih 39455  df-doch 39574  df-djh 39621  df-lcdual 39813  df-mapd 39851  df-hvmap 39983  df-hdmap1 40019  df-hdmap 40020
This theorem is referenced by:  hdmaprnlem9N  40083
  Copyright terms: Public domain W3C validator