Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem7N Structured version   Visualization version   GIF version

Theorem hdmaprnlem7N 41458
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem7N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))

Proof of Theorem hdmaprnlem7N
StepHypRef Expression
1 hdmaprnlem1.d . . 3 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.a . . 3 = (+g𝐶)
3 eqid 2725 . . 3 (-g𝐶) = (-g𝐶)
4 hdmaprnlem1.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 hdmaprnlem1.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 41195 . . . 4 (𝜑𝐶 ∈ LMod)
8 lmodabl 20804 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Abel)
97, 8syl 17 . . 3 (𝜑𝐶 ∈ Abel)
10 hdmaprnlem1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmaprnlem1.v . . . 4 𝑉 = (Base‘𝑈)
12 hdmaprnlem1.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmaprnlem1.ue . . . 4 (𝜑𝑢𝑉)
144, 10, 11, 5, 1, 12, 6, 13hdmapcl 41433 . . 3 (𝜑 → (𝑆𝑢) ∈ 𝐷)
15 hdmaprnlem1.se . . . 4 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1615eldifad 3956 . . 3 (𝜑𝑠𝐷)
17 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
18 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
19 hdmaprnlem1.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
20 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
21 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
22 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
23 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
24 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
25 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
264, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25hdmaprnlem4tN 41455 . . . 4 (𝜑𝑡𝑉)
274, 10, 11, 5, 1, 12, 6, 26hdmapcl 41433 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
281, 2, 3, 9, 14, 16, 27, 9, 14, 16, 27ablpnpcan 19786 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) = (𝑠(-g𝐶)(𝑆𝑡)))
291, 2lmodvacl 20770 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
307, 14, 16, 29syl3anc 1368 . . . 4 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
31 eqid 2725 . . . . 5 (LSubSp‘𝐶) = (LSubSp‘𝐶)
321, 31, 18lspsncl 20873 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
337, 30, 32syl2anc 582 . . 3 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
341, 18lspsnid 20889 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
357, 30, 34syl2anc 582 . . 3 (𝜑 → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
361, 2lmodvacl 20770 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
377, 14, 27, 36syl3anc 1368 . . . . 5 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
381, 18lspsnid 20889 . . . . 5 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
397, 37, 38syl2anc 582 . . . 4 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
40 hdmaprnlem1.p . . . . 5 + = (+g𝑈)
41 hdmaprnlem1.pt . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
424, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25, 40, 41hdmaprnlem6N 41457 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
4339, 42eleqtrrd 2828 . . 3 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
443, 31lssvsubcl 20840 . . 3 (((𝐶 ∈ LMod ∧ (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶)) ∧ (((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}) ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))) → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
457, 33, 35, 43, 44syl22anc 837 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
4628, 45eqeltrrd 2826 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  cdif 3941  {csn 4630  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  0gc0g 17424  -gcsg 18900  Abelcabl 19748  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867  HLchlt 38952  LHypclh 39587  DVecHcdvh 40681  LCDualclcd 41189  mapdcmpd 41227  HDMapchdma 41395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38555
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-mre 17569  df-mrc 17570  df-acs 17572  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-oppg 19309  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38578  df-lshyp 38579  df-lcv 38621  df-lfl 38660  df-lkr 38688  df-ldual 38726  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-llines 39101  df-lplanes 39102  df-lvols 39103  df-lines 39104  df-psubsp 39106  df-pmap 39107  df-padd 39399  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762  df-tgrp 40346  df-tendo 40358  df-edring 40360  df-dveca 40606  df-disoa 40632  df-dvech 40682  df-dib 40742  df-dic 40776  df-dih 40832  df-doch 40951  df-djh 40998  df-lcdual 41190  df-mapd 41228  df-hvmap 41360  df-hdmap1 41396  df-hdmap 41397
This theorem is referenced by:  hdmaprnlem9N  41460
  Copyright terms: Public domain W3C validator