MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd2 Structured version   Visualization version   GIF version

Theorem pntrsumbnd2 26915
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd2 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑘,𝑎,𝑚,𝑛   𝑘,𝑐,𝑚,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd2
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 pntrval.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd 26914 . 2 𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏
3 2rp 12920 . . . . 5 2 ∈ ℝ+
4 rpmulcl 12938 . . . . 5 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
53, 4mpan 688 . . . 4 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
6 oveq2 7365 . . . . . . . . . 10 (𝑚 = (𝑘 − 1) → (1...𝑚) = (1...(𝑘 − 1)))
76sumeq1d 15586 . . . . . . . . 9 (𝑚 = (𝑘 − 1) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
87fveq2d 6846 . . . . . . . 8 (𝑚 = (𝑘 − 1) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
98breq1d 5115 . . . . . . 7 (𝑚 = (𝑘 − 1) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ↔ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏))
10 simplr 767 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
11 nnz 12520 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1211adantl 482 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
13 peano2zm 12546 . . . . . . . 8 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1412, 13syl 17 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
159, 10, 14rspcdva 3582 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
165ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (2 · 𝑏) ∈ ℝ+)
1716rpge0d 12961 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 0 ≤ (2 · 𝑏))
18 sumeq1 15573 . . . . . . . . . . . . . . . . . . 19 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
19 sum0 15606 . . . . . . . . . . . . . . . . . . 19 Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0
2018, 19eqtrdi 2792 . . . . . . . . . . . . . . . . . 18 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0)
2120abs00bd 15176 . . . . . . . . . . . . . . . . 17 ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = 0)
2221breq1d 5115 . . . . . . . . . . . . . . . 16 ((𝑘...𝑚) = ∅ → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏) ↔ 0 ≤ (2 · 𝑏)))
2317, 22syl5ibrcom 246 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
2423imp 407 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
2524a1d 25 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
26 fzn0 13455 . . . . . . . . . . . . . 14 ((𝑘...𝑚) ≠ ∅ ↔ 𝑚 ∈ (ℤ𝑘))
27 fzfid 13878 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) ∈ Fin)
28 elfznn 13470 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
29 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3029nnrpd 12955 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
311pntrf 26911 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅:ℝ+⟶ℝ
3231ffvelcdmi 7034 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑅𝑛) ∈ ℝ)
3429peano2nnd 12170 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
3529, 34nnmulcld 12206 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
3633, 35nndivred 12207 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3728, 36sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3827, 37fsumrecl 15619 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3938recnd 11183 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4039abscld 15321 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
41 fzfid 13878 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...(𝑘 − 1)) ∈ Fin)
42 elfznn 13470 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...(𝑘 − 1)) → 𝑛 ∈ ℕ)
4342, 36sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...(𝑘 − 1))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4441, 43fsumrecl 15619 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4544recnd 11183 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4645abscld 15321 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
47 simplll 773 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ+)
4847rpred 12957 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ)
49 le2add 11637 . . . . . . . . . . . . . . . . 17 ((((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5040, 46, 48, 48, 49syl22anc 837 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5148recnd 11183 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℂ)
52512timesd 12396 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) = (𝑏 + 𝑏))
5352breq2d 5117 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) ↔ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
54 fzfid 13878 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘...𝑚) ∈ Fin)
55 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
56 elfzuz 13437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (𝑘...𝑚) → 𝑛 ∈ (ℤ𝑘))
57 eluznn 12843 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
5855, 56, 57syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → 𝑛 ∈ ℕ)
5958, 36syldan 591 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
6054, 59fsumrecl 15619 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
6160recnd 11183 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
6255nnred 12168 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
6362ltm1d 12087 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) < 𝑘)
64 fzdisj 13468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 − 1) < 𝑘 → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6655nncnd 12169 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℂ)
67 ax-1cn 11109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 ∈ ℂ
68 npcan 11410 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
6966, 67, 68sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) = 𝑘)
7069, 55eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ ℕ)
71 nnuz 12806 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ = (ℤ‘1)
7270, 71eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ (ℤ‘1))
7355nnzd 12526 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
7473, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) ∈ ℤ)
75 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℕ)
7675nncnd 12169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℂ)
7776, 67, 68sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘 − 1) + 1) = 𝑘)
7877fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (ℤ‘((𝑘 − 1) + 1)) = (ℤ𝑘))
7978eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)) ↔ 𝑚 ∈ (ℤ𝑘)))
8079biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)))
81 peano2uzr 12828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 − 1) ∈ ℤ ∧ 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1))) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
8274, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
83 fzsplit2 13466 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑘 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑚 ∈ (ℤ‘(𝑘 − 1))) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
8472, 82, 83syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
8569oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((𝑘 − 1) + 1)...𝑚) = (𝑘...𝑚))
8685uneq2d 4123 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8784, 86eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8837recnd 11183 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
8965, 87, 27, 88fsumsplit 15626 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9045, 61, 89mvrladdd 11568 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9190fveq2d 6846 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) = (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9239, 45abs2dif2d 15343 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9391, 92eqbrtrrd 5129 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9461abscld 15321 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
9540, 46readdcld 11184 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ)
96 2re 12227 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
9796a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 2 ∈ ℝ)
9897, 48remulcld 11185 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) ∈ ℝ)
99 letr 11249 . . . . . . . . . . . . . . . . . . 19 (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ ∧ (2 · 𝑏) ∈ ℝ) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10094, 95, 98, 99syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10193, 100mpand 693 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10253, 101sylbird 259 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10350, 102syld 47 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
104103ancomsd 466 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10526, 104sylan2b 594 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) ≠ ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10625, 105pm2.61dane 3032 . . . . . . . . . . . 12 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
107106imp 407 . . . . . . . . . . 11 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
108107an4s 658 . . . . . . . . . 10 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ (𝑚 ∈ ℤ ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
109108expr 457 . . . . . . . . 9 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑚 ∈ ℤ) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
110109ralimdva 3164 . . . . . . . 8 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
111110impancom 452 . . . . . . 7 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
112111an32s 650 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
11315, 112mpd 15 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
114113ralrimiva 3143 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
115 breq2 5109 . . . . . 6 (𝑐 = (2 · 𝑏) → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
1161152ralbidv 3212 . . . . 5 (𝑐 = (2 · 𝑏) → (∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
117116rspcev 3581 . . . 4 (((2 · 𝑏) ∈ ℝ+ ∧ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1185, 114, 117syl2an2r 683 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
119118rexlimiva 3144 . 2 (∃𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1202, 119ax-mp 5 1 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cun 3908  cin 3909  c0 4282   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  abscabs 15119  Σcsu 15570  ψcchp 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913  df-atan 26217  df-em 26342  df-cht 26446  df-vma 26447  df-chp 26448  df-ppi 26449
This theorem is referenced by:  pntpbnd  26936
  Copyright terms: Public domain W3C validator