MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd2 Structured version   Visualization version   GIF version

Theorem pntrsumbnd2 26715
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd2 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑘,𝑎,𝑚,𝑛   𝑘,𝑐,𝑚,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd2
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 pntrval.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd 26714 . 2 𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏
3 2rp 12735 . . . . 5 2 ∈ ℝ+
4 rpmulcl 12753 . . . . 5 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
53, 4mpan 687 . . . 4 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
6 oveq2 7283 . . . . . . . . . 10 (𝑚 = (𝑘 − 1) → (1...𝑚) = (1...(𝑘 − 1)))
76sumeq1d 15413 . . . . . . . . 9 (𝑚 = (𝑘 − 1) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
87fveq2d 6778 . . . . . . . 8 (𝑚 = (𝑘 − 1) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
98breq1d 5084 . . . . . . 7 (𝑚 = (𝑘 − 1) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ↔ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏))
10 simplr 766 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
11 nnz 12342 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1211adantl 482 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
13 peano2zm 12363 . . . . . . . 8 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1412, 13syl 17 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
159, 10, 14rspcdva 3562 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
165ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (2 · 𝑏) ∈ ℝ+)
1716rpge0d 12776 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 0 ≤ (2 · 𝑏))
18 sumeq1 15400 . . . . . . . . . . . . . . . . . . 19 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
19 sum0 15433 . . . . . . . . . . . . . . . . . . 19 Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0
2018, 19eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0)
2120abs00bd 15003 . . . . . . . . . . . . . . . . 17 ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = 0)
2221breq1d 5084 . . . . . . . . . . . . . . . 16 ((𝑘...𝑚) = ∅ → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏) ↔ 0 ≤ (2 · 𝑏)))
2317, 22syl5ibrcom 246 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
2423imp 407 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
2524a1d 25 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
26 fzn0 13270 . . . . . . . . . . . . . 14 ((𝑘...𝑚) ≠ ∅ ↔ 𝑚 ∈ (ℤ𝑘))
27 fzfid 13693 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) ∈ Fin)
28 elfznn 13285 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
29 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3029nnrpd 12770 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
311pntrf 26711 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅:ℝ+⟶ℝ
3231ffvelrni 6960 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑅𝑛) ∈ ℝ)
3429peano2nnd 11990 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
3529, 34nnmulcld 12026 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
3633, 35nndivred 12027 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3728, 36sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3827, 37fsumrecl 15446 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3938recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4039abscld 15148 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
41 fzfid 13693 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...(𝑘 − 1)) ∈ Fin)
42 elfznn 13285 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...(𝑘 − 1)) → 𝑛 ∈ ℕ)
4342, 36sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...(𝑘 − 1))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4441, 43fsumrecl 15446 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4544recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4645abscld 15148 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
47 simplll 772 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ+)
4847rpred 12772 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ)
49 le2add 11457 . . . . . . . . . . . . . . . . 17 ((((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5040, 46, 48, 48, 49syl22anc 836 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5148recnd 11003 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℂ)
52512timesd 12216 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) = (𝑏 + 𝑏))
5352breq2d 5086 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) ↔ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
54 fzfid 13693 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘...𝑚) ∈ Fin)
55 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
56 elfzuz 13252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (𝑘...𝑚) → 𝑛 ∈ (ℤ𝑘))
57 eluznn 12658 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
5855, 56, 57syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → 𝑛 ∈ ℕ)
5958, 36syldan 591 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
6054, 59fsumrecl 15446 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
6160recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
6255nnred 11988 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
6362ltm1d 11907 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) < 𝑘)
64 fzdisj 13283 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 − 1) < 𝑘 → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6655nncnd 11989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℂ)
67 ax-1cn 10929 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 ∈ ℂ
68 npcan 11230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
6966, 67, 68sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) = 𝑘)
7069, 55eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ ℕ)
71 nnuz 12621 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ = (ℤ‘1)
7270, 71eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ (ℤ‘1))
7355nnzd 12425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
7473, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) ∈ ℤ)
75 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℕ)
7675nncnd 11989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℂ)
7776, 67, 68sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘 − 1) + 1) = 𝑘)
7877fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (ℤ‘((𝑘 − 1) + 1)) = (ℤ𝑘))
7978eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)) ↔ 𝑚 ∈ (ℤ𝑘)))
8079biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)))
81 peano2uzr 12643 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 − 1) ∈ ℤ ∧ 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1))) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
8274, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
83 fzsplit2 13281 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑘 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑚 ∈ (ℤ‘(𝑘 − 1))) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
8472, 82, 83syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
8569oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((𝑘 − 1) + 1)...𝑚) = (𝑘...𝑚))
8685uneq2d 4097 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8784, 86eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8837recnd 11003 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
8965, 87, 27, 88fsumsplit 15453 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9045, 61, 89mvrladdd 11388 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9190fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) = (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9239, 45abs2dif2d 15170 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9391, 92eqbrtrrd 5098 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9461abscld 15148 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
9540, 46readdcld 11004 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ)
96 2re 12047 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
9796a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 2 ∈ ℝ)
9897, 48remulcld 11005 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) ∈ ℝ)
99 letr 11069 . . . . . . . . . . . . . . . . . . 19 (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ ∧ (2 · 𝑏) ∈ ℝ) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10094, 95, 98, 99syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10193, 100mpand 692 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10253, 101sylbird 259 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10350, 102syld 47 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
104103ancomsd 466 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10526, 104sylan2b 594 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) ≠ ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10625, 105pm2.61dane 3032 . . . . . . . . . . . 12 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
107106imp 407 . . . . . . . . . . 11 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
108107an4s 657 . . . . . . . . . 10 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ (𝑚 ∈ ℤ ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
109108expr 457 . . . . . . . . 9 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑚 ∈ ℤ) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
110109ralimdva 3108 . . . . . . . 8 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
111110impancom 452 . . . . . . 7 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
112111an32s 649 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
11315, 112mpd 15 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
114113ralrimiva 3103 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
115 breq2 5078 . . . . . 6 (𝑐 = (2 · 𝑏) → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
1161152ralbidv 3129 . . . . 5 (𝑐 = (2 · 𝑏) → (∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
117116rspcev 3561 . . . 4 (((2 · 𝑏) ∈ ℝ+ ∧ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1185, 114, 117syl2an2r 682 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
119118rexlimiva 3210 . 2 (∃𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1202, 119ax-mp 5 1 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cun 3885  cin 3886  c0 4256   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  abscabs 14945  Σcsu 15397  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249
This theorem is referenced by:  pntpbnd  26736
  Copyright terms: Public domain W3C validator