MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd2 Structured version   Visualization version   GIF version

Theorem pntrsumbnd2 25607
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd2 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑘,𝑎,𝑚,𝑛   𝑘,𝑐,𝑚,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd2
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 pntrval.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd 25606 . 2 𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏
3 2rp 12078 . . . . . 6 2 ∈ ℝ+
4 rpmulcl 12098 . . . . . 6 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
53, 4mpan 682 . . . . 5 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
65adantr 473 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (2 · 𝑏) ∈ ℝ+)
7 oveq2 6887 . . . . . . . . . 10 (𝑚 = (𝑘 − 1) → (1...𝑚) = (1...(𝑘 − 1)))
87sumeq1d 14771 . . . . . . . . 9 (𝑚 = (𝑘 − 1) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
98fveq2d 6416 . . . . . . . 8 (𝑚 = (𝑘 − 1) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
109breq1d 4854 . . . . . . 7 (𝑚 = (𝑘 − 1) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ↔ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏))
11 simplr 786 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
12 nnz 11688 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1312adantl 474 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
14 peano2zm 11709 . . . . . . . 8 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
1610, 11, 15rspcdva 3504 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
175ad2antrr 718 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (2 · 𝑏) ∈ ℝ+)
1817rpge0d 12120 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 0 ≤ (2 · 𝑏))
19 sumeq1 14759 . . . . . . . . . . . . . . . . . . 19 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
20 sum0 14792 . . . . . . . . . . . . . . . . . . 19 Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0
2119, 20syl6eq 2850 . . . . . . . . . . . . . . . . . 18 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0)
2221abs00bd 14371 . . . . . . . . . . . . . . . . 17 ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = 0)
2322breq1d 4854 . . . . . . . . . . . . . . . 16 ((𝑘...𝑚) = ∅ → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏) ↔ 0 ≤ (2 · 𝑏)))
2418, 23syl5ibrcom 239 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
2524imp 396 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
2625a1d 25 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
27 fzn0 12608 . . . . . . . . . . . . . 14 ((𝑘...𝑚) ≠ ∅ ↔ 𝑚 ∈ (ℤ𝑘))
28 fzfid 13026 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) ∈ Fin)
29 elfznn 12623 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
30 simpr 478 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3130nnrpd 12114 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
321pntrf 25603 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅:ℝ+⟶ℝ
3332ffvelrni 6585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
3431, 33syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑅𝑛) ∈ ℝ)
3530peano2nnd 11332 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
3630, 35nnmulcld 11365 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
3734, 36nndivred 11366 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3829, 37sylan2 587 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3928, 38fsumrecl 14805 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4039recnd 10358 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4140abscld 14515 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
42 fzfid 13026 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...(𝑘 − 1)) ∈ Fin)
43 elfznn 12623 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...(𝑘 − 1)) → 𝑛 ∈ ℕ)
4443, 37sylan2 587 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...(𝑘 − 1))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4542, 44fsumrecl 14805 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4645recnd 10358 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4746abscld 14515 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
48 simplll 792 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ+)
4948rpred 12116 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ)
50 le2add 10803 . . . . . . . . . . . . . . . . 17 ((((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5141, 47, 49, 49, 50syl22anc 868 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5249recnd 10358 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℂ)
53522timesd 11562 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) = (𝑏 + 𝑏))
5453breq2d 4856 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) ↔ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
55 simpllr 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
5655nnred 11330 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
5756ltm1d 11249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) < 𝑘)
58 fzdisj 12621 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 − 1) < 𝑘 → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6055nncnd 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℂ)
61 ax-1cn 10283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℂ
62 npcan 10583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
6360, 61, 62sylancl 581 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) = 𝑘)
6463, 55eqeltrd 2879 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ ℕ)
65 nnuz 11966 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℕ = (ℤ‘1)
6664, 65syl6eleq 2889 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ (ℤ‘1))
6755nnzd 11770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
6867, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) ∈ ℤ)
69 simplr 786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℕ)
7069nncnd 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℂ)
7170, 61, 62sylancl 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘 − 1) + 1) = 𝑘)
7271fveq2d 6416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (ℤ‘((𝑘 − 1) + 1)) = (ℤ𝑘))
7372eleq2d 2865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)) ↔ 𝑚 ∈ (ℤ𝑘)))
7473biimpar 470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)))
75 peano2uzr 11986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 − 1) ∈ ℤ ∧ 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1))) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
7668, 74, 75syl2anc 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
77 fzsplit2 12619 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑘 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑚 ∈ (ℤ‘(𝑘 − 1))) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
7866, 76, 77syl2anc 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
7963oveq1d 6894 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((𝑘 − 1) + 1)...𝑚) = (𝑘...𝑚))
8079uneq2d 3966 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8178, 80eqtrd 2834 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8238recnd 10358 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
8359, 81, 28, 82fsumsplit 14811 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
8483oveq1d 6894 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = ((Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
85 fzfid 13026 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘...𝑚) ∈ Fin)
86 elfzuz 12591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑘...𝑚) → 𝑛 ∈ (ℤ𝑘))
87 eluznn 12002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
8855, 86, 87syl2an 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → 𝑛 ∈ ℕ)
8988, 37syldan 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
9085, 89fsumrecl 14805 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
9190recnd 10358 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
9246, 91pncan2d 10687 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9384, 92eqtrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9493fveq2d 6416 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) = (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9540, 46abs2dif2d 14537 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9694, 95eqbrtrrd 4868 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9791abscld 14515 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
9841, 47readdcld 10359 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ)
99 2re 11386 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
10099a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 2 ∈ ℝ)
101100, 49remulcld 10360 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) ∈ ℝ)
102 letr 10422 . . . . . . . . . . . . . . . . . . 19 (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ ∧ (2 · 𝑏) ∈ ℝ) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10397, 98, 101, 102syl3anc 1491 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10496, 103mpand 687 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10554, 104sylbird 252 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10651, 105syld 47 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
107106ancomsd 458 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10827, 107sylan2b 588 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) ≠ ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10926, 108pm2.61dane 3059 . . . . . . . . . . . 12 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
110109imp 396 . . . . . . . . . . 11 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
111110an4s 651 . . . . . . . . . 10 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ (𝑚 ∈ ℤ ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
112111expr 449 . . . . . . . . 9 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑚 ∈ ℤ) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
113112ralimdva 3144 . . . . . . . 8 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
114113impancom 444 . . . . . . 7 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
115114an32s 643 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
11616, 115mpd 15 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
117116ralrimiva 3148 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
118 breq2 4848 . . . . . 6 (𝑐 = (2 · 𝑏) → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
1191182ralbidv 3171 . . . . 5 (𝑐 = (2 · 𝑏) → (∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
120119rspcev 3498 . . . 4 (((2 · 𝑏) ∈ ℝ+ ∧ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1216, 117, 120syl2anc 580 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
122121rexlimiva 3210 . 2 (∃𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1232, 122ax-mp 5 1 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2972  wral 3090  wrex 3091  cun 3768  cin 3769  c0 4116   class class class wbr 4844  cmpt 4923  cfv 6102  (class class class)co 6879  cc 10223  cr 10224  0cc0 10225  1c1 10226   + caddc 10228   · cmul 10230   < clt 10364  cle 10365  cmin 10557   / cdiv 10977  cn 11313  2c2 11367  cz 11665  cuz 11929  +crp 12073  ...cfz 12579  abscabs 14314  Σcsu 14756  ψcchp 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303  ax-addf 10304  ax-mulf 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-supp 7534  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-ixp 8150  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fsupp 8519  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-xnn0 11652  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-ioo 12427  df-ioc 12428  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-fl 12847  df-mod 12923  df-seq 13055  df-exp 13114  df-fac 13313  df-bc 13342  df-hash 13370  df-shft 14147  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-limsup 14542  df-clim 14559  df-rlim 14560  df-o1 14561  df-lo1 14562  df-sum 14757  df-ef 15133  df-e 15134  df-sin 15135  df-cos 15136  df-pi 15138  df-dvds 15319  df-gcd 15551  df-prm 15719  df-pc 15874  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-starv 16281  df-sca 16282  df-vsca 16283  df-ip 16284  df-tset 16285  df-ple 16286  df-ds 16288  df-unif 16289  df-hom 16290  df-cco 16291  df-rest 16397  df-topn 16398  df-0g 16416  df-gsum 16417  df-topgen 16418  df-pt 16419  df-prds 16422  df-xrs 16476  df-qtop 16481  df-imas 16482  df-xps 16484  df-mre 16560  df-mrc 16561  df-acs 16563  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-submnd 17650  df-mulg 17856  df-cntz 18061  df-cmn 18509  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-fbas 20064  df-fg 20065  df-cnfld 20068  df-top 21026  df-topon 21043  df-topsp 21065  df-bases 21078  df-cld 21151  df-ntr 21152  df-cls 21153  df-nei 21230  df-lp 21268  df-perf 21269  df-cn 21359  df-cnp 21360  df-haus 21447  df-cmp 21518  df-tx 21693  df-hmeo 21886  df-fil 21977  df-fm 22069  df-flim 22070  df-flf 22071  df-xms 22452  df-ms 22453  df-tms 22454  df-cncf 23008  df-limc 23970  df-dv 23971  df-log 24643  df-cxp 24644  df-em 25070  df-cht 25174  df-vma 25175  df-chp 25176  df-ppi 25177
This theorem is referenced by:  pntpbnd  25628
  Copyright terms: Public domain W3C validator