Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltaccoprm Structured version   Visualization version   GIF version

Theorem fltaccoprm 42650
Description: A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprmex.a (𝜑𝐴 ∈ ℕ)
fltabcoprmex.b (𝜑𝐵 ∈ ℕ)
fltabcoprmex.c (𝜑𝐶 ∈ ℕ)
fltabcoprmex.n (𝜑𝑁 ∈ ℕ0)
fltabcoprmex.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltaccoprm.1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
fltaccoprm (𝜑 → (𝐴 gcd 𝐶) = 1)

Proof of Theorem fltaccoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltaccoprm.1 . . . 4 (𝜑 → (𝐴 gcd 𝐵) = 1)
2 fltabcoprmex.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprmex.b . . . . 5 (𝜑𝐵 ∈ ℕ)
4 coprmgcdb 16686 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 257 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simprl 771 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐴)
8 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
98nnzd 12640 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
10 fltabcoprmex.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ)
1110nnzd 12640 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℤ)
1211adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐶 ∈ ℤ)
13 fltabcoprmex.n . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
1413adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑁 ∈ ℕ0)
15 dvdsexpim 16592 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
169, 12, 14, 15syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
172nnzd 12640 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℤ)
1817adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐴 ∈ ℤ)
19 dvdsexpim 16592 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
209, 18, 14, 19syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
2116, 20anim12d 609 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐶𝑖𝐴) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2221ancomsd 465 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2322imp 406 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)))
248, 14nnexpcld 14284 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℕ)
2524nnzd 12640 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℤ)
2625adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∈ ℤ)
2710, 13nnexpcld 14284 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑁) ∈ ℕ)
2827nnzd 12640 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) ∈ ℤ)
2928ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐶𝑁) ∈ ℤ)
302, 13nnexpcld 14284 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑁) ∈ ℕ)
3130nnzd 12640 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ∈ ℤ)
3231ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐴𝑁) ∈ ℤ)
33 dvds2sub 16328 . . . . . . . . . . 11 (((𝑖𝑁) ∈ ℤ ∧ (𝐶𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3426, 29, 32, 33syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3523, 34mpd 15 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁)))
362nncnd 12282 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
3736, 13expcld 14186 . . . . . . . . . . 11 (𝜑 → (𝐴𝑁) ∈ ℂ)
383nncnd 12282 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
3938, 13expcld 14186 . . . . . . . . . . 11 (𝜑 → (𝐵𝑁) ∈ ℂ)
40 fltabcoprmex.1 . . . . . . . . . . 11 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4137, 39, 40laddrotrd 42310 . . . . . . . . . 10 (𝜑 → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4241ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4335, 42breqtrd 5169 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ (𝐵𝑁))
44 simplr 769 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖 ∈ ℕ)
453ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝐵 ∈ ℕ)
4610nncnd 12282 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
4736, 38, 46, 13, 40flt0 42647 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
4847ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑁 ∈ ℕ)
49 dvdsexpnn 42368 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5044, 45, 48, 49syl3anc 1373 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5143, 50mpbird 257 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐵)
527, 51jca 511 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐴𝑖𝐵))
5352ex 412 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → (𝑖𝐴𝑖𝐵)))
5453imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
5554ralimdva 3167 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
566, 55mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
57 coprmgcdb 16686 . . 3 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
582, 10, 57syl2anc 584 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
5956, 58mpbid 232 1 (𝜑 → (𝐴 gcd 𝐶) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  (class class class)co 7431  1c1 11156   + caddc 11158  cmin 11492  cn 12266  0cn0 12526  cz 12613  cexp 14102  cdvds 16290   gcd cgcd 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532
This theorem is referenced by:  fltbccoprm  42651  flt4lem7  42669  nna4b4nsq  42670
  Copyright terms: Public domain W3C validator