Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltaccoprm Structured version   Visualization version   GIF version

Theorem fltaccoprm 42595
Description: A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprmex.a (𝜑𝐴 ∈ ℕ)
fltabcoprmex.b (𝜑𝐵 ∈ ℕ)
fltabcoprmex.c (𝜑𝐶 ∈ ℕ)
fltabcoprmex.n (𝜑𝑁 ∈ ℕ0)
fltabcoprmex.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltaccoprm.1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
fltaccoprm (𝜑 → (𝐴 gcd 𝐶) = 1)

Proof of Theorem fltaccoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltaccoprm.1 . . . 4 (𝜑 → (𝐴 gcd 𝐵) = 1)
2 fltabcoprmex.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprmex.b . . . . 5 (𝜑𝐵 ∈ ℕ)
4 coprmgcdb 16696 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 583 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 257 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simprl 770 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐴)
8 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
98nnzd 12666 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
10 fltabcoprmex.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ)
1110nnzd 12666 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℤ)
1211adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐶 ∈ ℤ)
13 fltabcoprmex.n . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
1413adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑁 ∈ ℕ0)
15 dvdsexpim 16602 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
169, 12, 14, 15syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
172nnzd 12666 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℤ)
1817adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐴 ∈ ℤ)
19 dvdsexpim 16602 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
209, 18, 14, 19syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
2116, 20anim12d 608 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐶𝑖𝐴) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2221ancomsd 465 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2322imp 406 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)))
248, 14nnexpcld 14294 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℕ)
2524nnzd 12666 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℤ)
2625adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∈ ℤ)
2710, 13nnexpcld 14294 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑁) ∈ ℕ)
2827nnzd 12666 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) ∈ ℤ)
2928ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐶𝑁) ∈ ℤ)
302, 13nnexpcld 14294 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑁) ∈ ℕ)
3130nnzd 12666 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ∈ ℤ)
3231ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐴𝑁) ∈ ℤ)
33 dvds2sub 16339 . . . . . . . . . . 11 (((𝑖𝑁) ∈ ℤ ∧ (𝐶𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3426, 29, 32, 33syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3523, 34mpd 15 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁)))
362nncnd 12309 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
3736, 13expcld 14196 . . . . . . . . . . 11 (𝜑 → (𝐴𝑁) ∈ ℂ)
383nncnd 12309 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
3938, 13expcld 14196 . . . . . . . . . . 11 (𝜑 → (𝐵𝑁) ∈ ℂ)
40 fltabcoprmex.1 . . . . . . . . . . 11 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4137, 39, 40laddrotrd 42264 . . . . . . . . . 10 (𝜑 → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4241ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4335, 42breqtrd 5192 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ (𝐵𝑁))
44 simplr 768 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖 ∈ ℕ)
453ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝐵 ∈ ℕ)
4610nncnd 12309 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
4736, 38, 46, 13, 40flt0 42592 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
4847ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑁 ∈ ℕ)
49 dvdsexpnn 42320 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5044, 45, 48, 49syl3anc 1371 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5143, 50mpbird 257 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐵)
527, 51jca 511 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐴𝑖𝐵))
5352ex 412 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → (𝑖𝐴𝑖𝐵)))
5453imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
5554ralimdva 3173 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
566, 55mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
57 coprmgcdb 16696 . . 3 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
582, 10, 57syl2anc 583 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
5956, 58mpbid 232 1 (𝜑 → (𝐴 gcd 𝐶) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  (class class class)co 7448  1c1 11185   + caddc 11187  cmin 11520  cn 12293  0cn0 12553  cz 12639  cexp 14112  cdvds 16302   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  fltbccoprm  42596  flt4lem7  42614  nna4b4nsq  42615
  Copyright terms: Public domain W3C validator