Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltaccoprm Structured version   Visualization version   GIF version

Theorem fltaccoprm 42663
Description: A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprmex.a (𝜑𝐴 ∈ ℕ)
fltabcoprmex.b (𝜑𝐵 ∈ ℕ)
fltabcoprmex.c (𝜑𝐶 ∈ ℕ)
fltabcoprmex.n (𝜑𝑁 ∈ ℕ0)
fltabcoprmex.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltaccoprm.1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
fltaccoprm (𝜑 → (𝐴 gcd 𝐶) = 1)

Proof of Theorem fltaccoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltaccoprm.1 . . . 4 (𝜑 → (𝐴 gcd 𝐵) = 1)
2 fltabcoprmex.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprmex.b . . . . 5 (𝜑𝐵 ∈ ℕ)
4 coprmgcdb 16668 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 257 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simprl 770 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐴)
8 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
98nnzd 12615 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
10 fltabcoprmex.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ)
1110nnzd 12615 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℤ)
1211adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐶 ∈ ℤ)
13 fltabcoprmex.n . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
1413adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑁 ∈ ℕ0)
15 dvdsexpim 16574 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
169, 12, 14, 15syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
172nnzd 12615 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℤ)
1817adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐴 ∈ ℤ)
19 dvdsexpim 16574 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
209, 18, 14, 19syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
2116, 20anim12d 609 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐶𝑖𝐴) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2221ancomsd 465 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2322imp 406 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)))
248, 14nnexpcld 14263 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℕ)
2524nnzd 12615 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℤ)
2625adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∈ ℤ)
2710, 13nnexpcld 14263 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑁) ∈ ℕ)
2827nnzd 12615 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) ∈ ℤ)
2928ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐶𝑁) ∈ ℤ)
302, 13nnexpcld 14263 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑁) ∈ ℕ)
3130nnzd 12615 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ∈ ℤ)
3231ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐴𝑁) ∈ ℤ)
33 dvds2sub 16310 . . . . . . . . . . 11 (((𝑖𝑁) ∈ ℤ ∧ (𝐶𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3426, 29, 32, 33syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3523, 34mpd 15 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁)))
362nncnd 12256 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
3736, 13expcld 14164 . . . . . . . . . . 11 (𝜑 → (𝐴𝑁) ∈ ℂ)
383nncnd 12256 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
3938, 13expcld 14164 . . . . . . . . . . 11 (𝜑 → (𝐵𝑁) ∈ ℂ)
40 fltabcoprmex.1 . . . . . . . . . . 11 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4137, 39, 40laddrotrd 42325 . . . . . . . . . 10 (𝜑 → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4241ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4335, 42breqtrd 5145 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ (𝐵𝑁))
44 simplr 768 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖 ∈ ℕ)
453ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝐵 ∈ ℕ)
4610nncnd 12256 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
4736, 38, 46, 13, 40flt0 42660 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
4847ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑁 ∈ ℕ)
49 dvdsexpnn 42382 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5044, 45, 48, 49syl3anc 1373 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5143, 50mpbird 257 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐵)
527, 51jca 511 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐴𝑖𝐵))
5352ex 412 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → (𝑖𝐴𝑖𝐵)))
5453imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
5554ralimdva 3152 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
566, 55mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
57 coprmgcdb 16668 . . 3 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
582, 10, 57syl2anc 584 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
5956, 58mpbid 232 1 (𝜑 → (𝐴 gcd 𝐶) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  (class class class)co 7405  1c1 11130   + caddc 11132  cmin 11466  cn 12240  0cn0 12501  cz 12588  cexp 14079  cdvds 16272   gcd cgcd 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514
This theorem is referenced by:  fltbccoprm  42664  flt4lem7  42682  nna4b4nsq  42683
  Copyright terms: Public domain W3C validator