Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltaccoprm Structured version   Visualization version   GIF version

Theorem fltaccoprm 40033
Description: A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprmex.a (𝜑𝐴 ∈ ℕ)
fltabcoprmex.b (𝜑𝐵 ∈ ℕ)
fltabcoprmex.c (𝜑𝐶 ∈ ℕ)
fltabcoprmex.n (𝜑𝑁 ∈ ℕ0)
fltabcoprmex.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltaccoprm.1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
fltaccoprm (𝜑 → (𝐴 gcd 𝐶) = 1)

Proof of Theorem fltaccoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltaccoprm.1 . . . 4 (𝜑 → (𝐴 gcd 𝐵) = 1)
2 fltabcoprmex.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprmex.b . . . . 5 (𝜑𝐵 ∈ ℕ)
4 coprmgcdb 16083 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 587 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 260 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simprl 771 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐴)
8 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
98nnzd 12160 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
10 fltabcoprmex.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ)
1110nnzd 12160 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℤ)
1211adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐶 ∈ ℤ)
13 fltabcoprmex.n . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
1413adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑁 ∈ ℕ0)
15 dvdsexpim 39889 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
169, 12, 14, 15syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐶 → (𝑖𝑁) ∥ (𝐶𝑁)))
172nnzd 12160 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℤ)
1817adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝐴 ∈ ℤ)
19 dvdsexpim 39889 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
209, 18, 14, 19syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝐴 → (𝑖𝑁) ∥ (𝐴𝑁)))
2116, 20anim12d 612 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐶𝑖𝐴) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2221ancomsd 469 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁))))
2322imp 410 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)))
248, 14nnexpcld 13691 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℕ)
2524nnzd 12160 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → (𝑖𝑁) ∈ ℤ)
2625adantr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∈ ℤ)
2710, 13nnexpcld 13691 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑁) ∈ ℕ)
2827nnzd 12160 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) ∈ ℤ)
2928ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐶𝑁) ∈ ℤ)
302, 13nnexpcld 13691 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑁) ∈ ℕ)
3130nnzd 12160 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ∈ ℤ)
3231ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝐴𝑁) ∈ ℤ)
33 dvds2sub 15729 . . . . . . . . . . 11 (((𝑖𝑁) ∈ ℤ ∧ (𝐶𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3426, 29, 32, 33syl3anc 1372 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (((𝑖𝑁) ∥ (𝐶𝑁) ∧ (𝑖𝑁) ∥ (𝐴𝑁)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁))))
3523, 34mpd 15 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ ((𝐶𝑁) − (𝐴𝑁)))
362nncnd 11725 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
3736, 13expcld 13595 . . . . . . . . . . 11 (𝜑 → (𝐴𝑁) ∈ ℂ)
383nncnd 11725 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
3938, 13expcld 13595 . . . . . . . . . . 11 (𝜑 → (𝐵𝑁) ∈ ℂ)
40 fltabcoprmex.1 . . . . . . . . . . 11 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4137, 39, 40laddrotrd 39864 . . . . . . . . . 10 (𝜑 → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4241ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → ((𝐶𝑁) − (𝐴𝑁)) = (𝐵𝑁))
4335, 42breqtrd 5053 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝑁) ∥ (𝐵𝑁))
44 simplr 769 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖 ∈ ℕ)
453ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝐵 ∈ ℕ)
4610nncnd 11725 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
4736, 38, 46, 13, 40flt0 40030 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
4847ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑁 ∈ ℕ)
49 dvdsexpnn 39901 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5044, 45, 48, 49syl3anc 1372 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐵 ↔ (𝑖𝑁) ∥ (𝐵𝑁)))
5143, 50mpbird 260 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → 𝑖𝐵)
527, 51jca 515 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐶)) → (𝑖𝐴𝑖𝐵))
5352ex 416 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐶) → (𝑖𝐴𝑖𝐵)))
5453imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
5554ralimdva 3091 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1)))
566, 55mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
57 coprmgcdb 16083 . . 3 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
582, 10, 57syl2anc 587 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
5956, 58mpbid 235 1 (𝜑 → (𝐴 gcd 𝐶) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053   class class class wbr 5027  (class class class)co 7164  1c1 10609   + caddc 10611  cmin 10941  cn 11709  0cn0 11969  cz 12055  cexp 13514  cdvds 15692   gcd cgcd 15930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-dvds 15693  df-gcd 15931
This theorem is referenced by:  fltbccoprm  40034  flt4lem7  40052  nna4b4nsq  40053
  Copyright terms: Public domain W3C validator