Step | Hyp | Ref
| Expression |
1 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑘 = 𝐼 → (𝑤‘𝑘) = (𝑤‘𝐼)) |
2 | | fveq2 6717 |
. . . . . . . . 9
⊢ (𝑘 = 𝐼 → (𝐹‘𝑘) = (𝐹‘𝐼)) |
3 | 2 | unieqd 4833 |
. . . . . . . 8
⊢ (𝑘 = 𝐼 → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝐼)) |
4 | 1, 3 | eleq12d 2832 |
. . . . . . 7
⊢ (𝑘 = 𝐼 → ((𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘) ↔ (𝑤‘𝐼) ∈ ∪ (𝐹‘𝐼))) |
5 | | vex 3412 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
6 | 5 | elixp 8585 |
. . . . . . . . . 10
⊢ (𝑤 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
7 | 6 | simprbi 500 |
. . . . . . . . 9
⊢ (𝑤 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
8 | | ptpjpre1.1 |
. . . . . . . . 9
⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
9 | 7, 8 | eleq2s 2856 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑋 → ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
10 | 9 | adantl 485 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑤 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
11 | | simplrl 777 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑤 ∈ 𝑋) → 𝐼 ∈ 𝐴) |
12 | 4, 10, 11 | rspcdva 3539 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑤 ∈ 𝑋) → (𝑤‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
13 | 12 | fmpttd 6932 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)):𝑋⟶∪ (𝐹‘𝐼)) |
14 | | ffn 6545 |
. . . . 5
⊢ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)):𝑋⟶∪ (𝐹‘𝐼) → (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) Fn 𝑋) |
15 | | elpreima 6878 |
. . . . 5
⊢ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) Fn 𝑋 → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈))) |
16 | 13, 14, 15 | 3syl 18 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈))) |
17 | | fveq1 6716 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤‘𝐼) = (𝑧‘𝐼)) |
18 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) |
19 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝑧‘𝐼) ∈ V |
20 | 17, 18, 19 | fvmpt 6818 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑋 → ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) = (𝑧‘𝐼)) |
21 | 20 | eleq1d 2822 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑋 → (((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧‘𝐼) ∈ 𝑈)) |
22 | 21 | pm5.32i 578 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ (𝑧‘𝐼) ∈ 𝑈)) |
23 | 8 | eleq2i 2829 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑋 ↔ 𝑧 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
24 | | vex 3412 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
25 | 24 | elixp 8585 |
. . . . . . . . 9
⊢ (𝑧 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
26 | 23, 25 | bitri 278 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
27 | 26 | anbi1i 627 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) ∧ (𝑧‘𝐼) ∈ 𝑈)) |
28 | | anass 472 |
. . . . . . 7
⊢ (((𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
29 | 27, 28 | bitri 278 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
30 | 22, 29 | bitri 278 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
31 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑧‘𝐼) ∈ 𝑈) |
32 | | fveq2 6717 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐼 → (𝑧‘𝑘) = (𝑧‘𝐼)) |
33 | | iftrue 4445 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) = 𝑈) |
34 | 32, 33 | eleq12d 2832 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐼 → ((𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ↔ (𝑧‘𝐼) ∈ 𝑈)) |
35 | 31, 34 | syl5ibrcom 250 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑘 = 𝐼 → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
36 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
37 | | iffalse 4448 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
38 | 37 | eleq2d 2823 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝐼 → ((𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ↔ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
39 | 36, 38 | syl5ibrcom 250 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
40 | 35, 39 | pm2.61d 182 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) |
41 | 40 | expr 460 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ (𝑧‘𝐼) ∈ 𝑈) → ((𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
42 | 41 | ralimdv 3101 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ (𝑧‘𝐼) ∈ 𝑈) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
43 | 42 | expimpd 457 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (((𝑧‘𝐼) ∈ 𝑈 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
44 | 43 | ancomsd 469 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
45 | | elssuni 4851 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (𝐹‘𝐼) → 𝑈 ⊆ ∪ (𝐹‘𝐼)) |
46 | 45 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝑈 ⊆ ∪ (𝐹‘𝐼)) |
47 | 33, 3 | sseq12d 3934 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘) ↔ 𝑈 ⊆ ∪ (𝐹‘𝐼))) |
48 | 46, 47 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘))) |
49 | | ssid 3923 |
. . . . . . . . . . . 12
⊢ ∪ (𝐹‘𝑘) ⊆ ∪ (𝐹‘𝑘) |
50 | 37, 49 | eqsstrdi 3955 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘)) |
51 | 48, 50 | pm2.61d1 183 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘)) |
52 | 51 | sseld 3900 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
53 | 52 | ralimdv 3101 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
54 | 34 | rspcv 3532 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (𝑧‘𝐼) ∈ 𝑈)) |
55 | 54 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (𝑧‘𝐼) ∈ 𝑈)) |
56 | 53, 55 | jcad 516 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
57 | 44, 56 | impbid 215 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
58 | 57 | anbi2d 632 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))))) |
59 | 30, 58 | syl5bb 286 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))))) |
60 | 16, 59 | bitrd 282 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))))) |
61 | 24 | elixp 8585 |
. . 3
⊢ (𝑧 ∈ X𝑘 ∈
𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
62 | 60, 61 | bitr4di 292 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ 𝑧 ∈ X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
63 | 62 | eqrdv 2735 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) |