MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre1 Structured version   Visualization version   GIF version

Theorem ptpjpre1 23491
Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.)
Hypothesis
Ref Expression
ptpjpre1.1 𝑋 = X𝑘𝐴 (𝐹𝑘)
Assertion
Ref Expression
ptpjpre1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Distinct variable groups:   𝑤,𝑘,𝐴   𝑘,𝐹,𝑤   𝑘,𝐼,𝑤   𝑈,𝑘,𝑤   𝑘,𝑉,𝑤   𝑤,𝑋
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ptpjpre1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . 8 (𝑘 = 𝐼 → (𝑤𝑘) = (𝑤𝐼))
2 fveq2 6840 . . . . . . . . 9 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
32unieqd 4880 . . . . . . . 8 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
41, 3eleq12d 2822 . . . . . . 7 (𝑘 = 𝐼 → ((𝑤𝑘) ∈ (𝐹𝑘) ↔ (𝑤𝐼) ∈ (𝐹𝐼)))
5 vex 3448 . . . . . . . . . . 11 𝑤 ∈ V
65elixp 8854 . . . . . . . . . 10 (𝑤X𝑘𝐴 (𝐹𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘)))
76simprbi 496 . . . . . . . . 9 (𝑤X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
8 ptpjpre1.1 . . . . . . . . 9 𝑋 = X𝑘𝐴 (𝐹𝑘)
97, 8eleq2s 2846 . . . . . . . 8 (𝑤𝑋 → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
109adantl 481 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
11 simplrl 776 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → 𝐼𝐴)
124, 10, 11rspcdva 3586 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → (𝑤𝐼) ∈ (𝐹𝐼))
1312fmpttd 7069 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼))
14 ffn 6670 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼) → (𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋)
15 elpreima 7012 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋 → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
1613, 14, 153syl 18 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
17 fveq1 6839 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝐼) = (𝑧𝐼))
18 eqid 2729 . . . . . . . . 9 (𝑤𝑋 ↦ (𝑤𝐼)) = (𝑤𝑋 ↦ (𝑤𝐼))
19 fvex 6853 . . . . . . . . 9 (𝑧𝐼) ∈ V
2017, 18, 19fvmpt 6950 . . . . . . . 8 (𝑧𝑋 → ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) = (𝑧𝐼))
2120eleq1d 2813 . . . . . . 7 (𝑧𝑋 → (((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧𝐼) ∈ 𝑈))
2221pm5.32i 574 . . . . . 6 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈))
238eleq2i 2820 . . . . . . . . 9 (𝑧𝑋𝑧X𝑘𝐴 (𝐹𝑘))
24 vex 3448 . . . . . . . . . 10 𝑧 ∈ V
2524elixp 8854 . . . . . . . . 9 (𝑧X𝑘𝐴 (𝐹𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2623, 25bitri 275 . . . . . . . 8 (𝑧𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2726anbi1i 624 . . . . . . 7 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈))
28 anass 468 . . . . . . 7 (((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
2927, 28bitri 275 . . . . . 6 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3022, 29bitri 275 . . . . 5 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
31 simprl 770 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝐼) ∈ 𝑈)
32 fveq2 6840 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → (𝑧𝑘) = (𝑧𝐼))
33 iftrue 4490 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = 𝑈)
3432, 33eleq12d 2822 . . . . . . . . . . . . 13 (𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝐼) ∈ 𝑈))
3531, 34syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
36 simprr 772 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ (𝐹𝑘))
37 iffalse 4493 . . . . . . . . . . . . . 14 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = (𝐹𝑘))
3837eleq2d 2814 . . . . . . . . . . . . 13 𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝑘) ∈ (𝐹𝑘)))
3936, 38syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4035, 39pm2.61d 179 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
4140expr 456 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → ((𝑧𝑘) ∈ (𝐹𝑘) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4241ralimdv 3147 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4342expimpd 453 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (((𝑧𝐼) ∈ 𝑈 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4443ancomsd 465 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
45 elssuni 4897 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐹𝐼) → 𝑈 (𝐹𝐼))
4645ad2antll 729 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 (𝐹𝐼))
4733, 3sseq12d 3977 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘) ↔ 𝑈 (𝐹𝐼)))
4846, 47syl5ibrcom 247 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘)))
49 ssid 3966 . . . . . . . . . . . 12 (𝐹𝑘) ⊆ (𝐹𝑘)
5037, 49eqsstrdi 3988 . . . . . . . . . . 11 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5148, 50pm2.61d1 180 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5251sseld 3942 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝑘) ∈ (𝐹𝑘)))
5352ralimdv 3147 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
5434rspcv 3581 . . . . . . . . 9 (𝐼𝐴 → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5554ad2antrl 728 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5653, 55jcad 512 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
5744, 56impbid 212 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
5857anbi2d 630 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
5930, 58bitrid 283 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6016, 59bitrd 279 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6124elixp 8854 . . 3 (𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6260, 61bitr4di 289 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ 𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6362eqrdv 2727 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  ifcif 4484   cuni 4867  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  Xcixp 8847  Topctop 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ixp 8848
This theorem is referenced by:  ptpjpre2  23500  ptbasfi  23501
  Copyright terms: Public domain W3C validator