| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑘 = 𝐼 → (𝑤‘𝑘) = (𝑤‘𝐼)) |
| 2 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 𝐼 → (𝐹‘𝑘) = (𝐹‘𝐼)) |
| 3 | 2 | unieqd 4920 |
. . . . . . . 8
⊢ (𝑘 = 𝐼 → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝐼)) |
| 4 | 1, 3 | eleq12d 2835 |
. . . . . . 7
⊢ (𝑘 = 𝐼 → ((𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘) ↔ (𝑤‘𝐼) ∈ ∪ (𝐹‘𝐼))) |
| 5 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
| 6 | 5 | elixp 8944 |
. . . . . . . . . 10
⊢ (𝑤 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 7 | 6 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑤 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
| 8 | | ptpjpre1.1 |
. . . . . . . . 9
⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
| 9 | 7, 8 | eleq2s 2859 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑋 → ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
| 10 | 9 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑤 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 (𝑤‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
| 11 | | simplrl 777 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑤 ∈ 𝑋) → 𝐼 ∈ 𝐴) |
| 12 | 4, 10, 11 | rspcdva 3623 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑤 ∈ 𝑋) → (𝑤‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
| 13 | 12 | fmpttd 7135 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)):𝑋⟶∪ (𝐹‘𝐼)) |
| 14 | | ffn 6736 |
. . . . 5
⊢ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)):𝑋⟶∪ (𝐹‘𝐼) → (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) Fn 𝑋) |
| 15 | | elpreima 7078 |
. . . . 5
⊢ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) Fn 𝑋 → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈))) |
| 16 | 13, 14, 15 | 3syl 18 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈))) |
| 17 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤‘𝐼) = (𝑧‘𝐼)) |
| 18 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) |
| 19 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝑧‘𝐼) ∈ V |
| 20 | 17, 18, 19 | fvmpt 7016 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑋 → ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) = (𝑧‘𝐼)) |
| 21 | 20 | eleq1d 2826 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑋 → (((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧‘𝐼) ∈ 𝑈)) |
| 22 | 21 | pm5.32i 574 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 ∈ 𝑋 ∧ (𝑧‘𝐼) ∈ 𝑈)) |
| 23 | 8 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑋 ↔ 𝑧 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
| 24 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 25 | 24 | elixp 8944 |
. . . . . . . . 9
⊢ (𝑧 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 26 | 23, 25 | bitri 275 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 27 | 26 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) ∧ (𝑧‘𝐼) ∈ 𝑈)) |
| 28 | | anass 468 |
. . . . . . 7
⊢ (((𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
| 29 | 27, 28 | bitri 275 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
| 30 | 22, 29 | bitri 275 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
| 31 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑧‘𝐼) ∈ 𝑈) |
| 32 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐼 → (𝑧‘𝑘) = (𝑧‘𝐼)) |
| 33 | | iftrue 4531 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) = 𝑈) |
| 34 | 32, 33 | eleq12d 2835 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐼 → ((𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ↔ (𝑧‘𝐼) ∈ 𝑈)) |
| 35 | 31, 34 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑘 = 𝐼 → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 36 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
| 37 | | iffalse 4534 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
| 38 | 37 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝐼 → ((𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ↔ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 39 | 36, 38 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 40 | 35, 39 | pm2.61d 179 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ ((𝑧‘𝐼) ∈ 𝑈 ∧ (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) |
| 41 | 40 | expr 456 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ (𝑧‘𝐼) ∈ 𝑈) → ((𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) → (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 42 | 41 | ralimdv 3169 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ (𝑧‘𝐼) ∈ 𝑈) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 43 | 42 | expimpd 453 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (((𝑧‘𝐼) ∈ 𝑈 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘)) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 44 | 43 | ancomsd 465 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 45 | | elssuni 4937 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (𝐹‘𝐼) → 𝑈 ⊆ ∪ (𝐹‘𝐼)) |
| 46 | 45 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝑈 ⊆ ∪ (𝐹‘𝐼)) |
| 47 | 33, 3 | sseq12d 4017 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘) ↔ 𝑈 ⊆ ∪ (𝐹‘𝐼))) |
| 48 | 46, 47 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘))) |
| 49 | | ssid 4006 |
. . . . . . . . . . . 12
⊢ ∪ (𝐹‘𝑘) ⊆ ∪ (𝐹‘𝑘) |
| 50 | 37, 49 | eqsstrdi 4028 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘)) |
| 51 | 48, 50 | pm2.61d1 180 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ⊆ ∪
(𝐹‘𝑘)) |
| 52 | 51 | sseld 3982 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 53 | 52 | ralimdv 3169 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 54 | 34 | rspcv 3618 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (𝑧‘𝐼) ∈ 𝑈)) |
| 55 | 54 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (𝑧‘𝐼) ∈ 𝑈)) |
| 56 | 53, 55 | jcad 512 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) → (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈))) |
| 57 | 44, 56 | impbid 212 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈) ↔ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 58 | 57 | anbi2d 630 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ ∪ (𝐹‘𝑘) ∧ (𝑧‘𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))))) |
| 59 | 30, 58 | bitrid 283 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → ((𝑧 ∈ 𝑋 ∧ ((𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))))) |
| 60 | 16, 59 | bitrd 279 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))))) |
| 61 | 24 | elixp 8944 |
. . 3
⊢ (𝑧 ∈ X𝑘 ∈
𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑧‘𝑘) ∈ if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 62 | 60, 61 | bitr4di 289 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (𝑧 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ↔ 𝑧 ∈ X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘)))) |
| 63 | 62 | eqrdv 2735 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) |