MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre1 Structured version   Visualization version   GIF version

Theorem ptpjpre1 21863
Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.)
Hypothesis
Ref Expression
ptpjpre1.1 𝑋 = X𝑘𝐴 (𝐹𝑘)
Assertion
Ref Expression
ptpjpre1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Distinct variable groups:   𝑤,𝑘,𝐴   𝑘,𝐹,𝑤   𝑘,𝐼,𝑤   𝑈,𝑘,𝑤   𝑘,𝑉,𝑤   𝑤,𝑋
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ptpjpre1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6538 . . . . . . . 8 (𝑘 = 𝐼 → (𝑤𝑘) = (𝑤𝐼))
2 fveq2 6538 . . . . . . . . 9 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
32unieqd 4755 . . . . . . . 8 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
41, 3eleq12d 2877 . . . . . . 7 (𝑘 = 𝐼 → ((𝑤𝑘) ∈ (𝐹𝑘) ↔ (𝑤𝐼) ∈ (𝐹𝐼)))
5 vex 3440 . . . . . . . . . . 11 𝑤 ∈ V
65elixp 8317 . . . . . . . . . 10 (𝑤X𝑘𝐴 (𝐹𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘)))
76simprbi 497 . . . . . . . . 9 (𝑤X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
8 ptpjpre1.1 . . . . . . . . 9 𝑋 = X𝑘𝐴 (𝐹𝑘)
97, 8eleq2s 2901 . . . . . . . 8 (𝑤𝑋 → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
109adantl 482 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
11 simplrl 773 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → 𝐼𝐴)
124, 10, 11rspcdva 3565 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → (𝑤𝐼) ∈ (𝐹𝐼))
1312fmpttd 6742 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼))
14 ffn 6382 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼) → (𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋)
15 elpreima 6693 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋 → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
1613, 14, 153syl 18 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
17 fveq1 6537 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝐼) = (𝑧𝐼))
18 eqid 2795 . . . . . . . . 9 (𝑤𝑋 ↦ (𝑤𝐼)) = (𝑤𝑋 ↦ (𝑤𝐼))
19 fvex 6551 . . . . . . . . 9 (𝑧𝐼) ∈ V
2017, 18, 19fvmpt 6635 . . . . . . . 8 (𝑧𝑋 → ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) = (𝑧𝐼))
2120eleq1d 2867 . . . . . . 7 (𝑧𝑋 → (((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧𝐼) ∈ 𝑈))
2221pm5.32i 575 . . . . . 6 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈))
238eleq2i 2874 . . . . . . . . 9 (𝑧𝑋𝑧X𝑘𝐴 (𝐹𝑘))
24 vex 3440 . . . . . . . . . 10 𝑧 ∈ V
2524elixp 8317 . . . . . . . . 9 (𝑧X𝑘𝐴 (𝐹𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2623, 25bitri 276 . . . . . . . 8 (𝑧𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2726anbi1i 623 . . . . . . 7 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈))
28 anass 469 . . . . . . 7 (((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
2927, 28bitri 276 . . . . . 6 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3022, 29bitri 276 . . . . 5 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
31 simprl 767 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝐼) ∈ 𝑈)
32 fveq2 6538 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → (𝑧𝑘) = (𝑧𝐼))
33 iftrue 4387 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = 𝑈)
3432, 33eleq12d 2877 . . . . . . . . . . . . 13 (𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝐼) ∈ 𝑈))
3531, 34syl5ibrcom 248 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
36 simprr 769 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ (𝐹𝑘))
37 iffalse 4390 . . . . . . . . . . . . . 14 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = (𝐹𝑘))
3837eleq2d 2868 . . . . . . . . . . . . 13 𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝑘) ∈ (𝐹𝑘)))
3936, 38syl5ibrcom 248 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4035, 39pm2.61d 180 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
4140expr 457 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → ((𝑧𝑘) ∈ (𝐹𝑘) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4241ralimdv 3145 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4342expimpd 454 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (((𝑧𝐼) ∈ 𝑈 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4443ancomsd 466 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
45 elssuni 4774 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐹𝐼) → 𝑈 (𝐹𝐼))
4645ad2antll 725 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 (𝐹𝐼))
4733, 3sseq12d 3921 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘) ↔ 𝑈 (𝐹𝐼)))
4846, 47syl5ibrcom 248 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘)))
49 ssid 3910 . . . . . . . . . . . 12 (𝐹𝑘) ⊆ (𝐹𝑘)
5037, 49syl6eqss 3942 . . . . . . . . . . 11 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5148, 50pm2.61d1 181 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5251sseld 3888 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝑘) ∈ (𝐹𝑘)))
5352ralimdv 3145 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
5434rspcv 3555 . . . . . . . . 9 (𝐼𝐴 → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5554ad2antrl 724 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5653, 55jcad 513 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
5744, 56impbid 213 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
5857anbi2d 628 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
5930, 58syl5bb 284 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6016, 59bitrd 280 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6124elixp 8317 . . 3 (𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6260, 61syl6bbr 290 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ 𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6362eqrdv 2793 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wss 3859  ifcif 4381   cuni 4745  cmpt 5041  ccnv 5442  cima 5446   Fn wfn 6220  wf 6221  cfv 6225  Xcixp 8310  Topctop 21185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-fv 6233  df-ixp 8311
This theorem is referenced by:  ptpjpre2  21872  ptbasfi  21873
  Copyright terms: Public domain W3C validator