MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre1 Structured version   Visualization version   GIF version

Theorem ptpjpre1 22922
Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.)
Hypothesis
Ref Expression
ptpjpre1.1 𝑋 = X𝑘𝐴 (𝐹𝑘)
Assertion
Ref Expression
ptpjpre1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Distinct variable groups:   𝑤,𝑘,𝐴   𝑘,𝐹,𝑤   𝑘,𝐼,𝑤   𝑈,𝑘,𝑤   𝑘,𝑉,𝑤   𝑤,𝑋
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ptpjpre1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . . . . 8 (𝑘 = 𝐼 → (𝑤𝑘) = (𝑤𝐼))
2 fveq2 6842 . . . . . . . . 9 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
32unieqd 4879 . . . . . . . 8 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
41, 3eleq12d 2832 . . . . . . 7 (𝑘 = 𝐼 → ((𝑤𝑘) ∈ (𝐹𝑘) ↔ (𝑤𝐼) ∈ (𝐹𝐼)))
5 vex 3449 . . . . . . . . . . 11 𝑤 ∈ V
65elixp 8842 . . . . . . . . . 10 (𝑤X𝑘𝐴 (𝐹𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘)))
76simprbi 497 . . . . . . . . 9 (𝑤X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
8 ptpjpre1.1 . . . . . . . . 9 𝑋 = X𝑘𝐴 (𝐹𝑘)
97, 8eleq2s 2856 . . . . . . . 8 (𝑤𝑋 → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
109adantl 482 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
11 simplrl 775 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → 𝐼𝐴)
124, 10, 11rspcdva 3582 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → (𝑤𝐼) ∈ (𝐹𝐼))
1312fmpttd 7063 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼))
14 ffn 6668 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼) → (𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋)
15 elpreima 7008 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋 → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
1613, 14, 153syl 18 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
17 fveq1 6841 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝐼) = (𝑧𝐼))
18 eqid 2736 . . . . . . . . 9 (𝑤𝑋 ↦ (𝑤𝐼)) = (𝑤𝑋 ↦ (𝑤𝐼))
19 fvex 6855 . . . . . . . . 9 (𝑧𝐼) ∈ V
2017, 18, 19fvmpt 6948 . . . . . . . 8 (𝑧𝑋 → ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) = (𝑧𝐼))
2120eleq1d 2822 . . . . . . 7 (𝑧𝑋 → (((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧𝐼) ∈ 𝑈))
2221pm5.32i 575 . . . . . 6 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈))
238eleq2i 2829 . . . . . . . . 9 (𝑧𝑋𝑧X𝑘𝐴 (𝐹𝑘))
24 vex 3449 . . . . . . . . . 10 𝑧 ∈ V
2524elixp 8842 . . . . . . . . 9 (𝑧X𝑘𝐴 (𝐹𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2623, 25bitri 274 . . . . . . . 8 (𝑧𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2726anbi1i 624 . . . . . . 7 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈))
28 anass 469 . . . . . . 7 (((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
2927, 28bitri 274 . . . . . 6 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3022, 29bitri 274 . . . . 5 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
31 simprl 769 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝐼) ∈ 𝑈)
32 fveq2 6842 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → (𝑧𝑘) = (𝑧𝐼))
33 iftrue 4492 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = 𝑈)
3432, 33eleq12d 2832 . . . . . . . . . . . . 13 (𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝐼) ∈ 𝑈))
3531, 34syl5ibrcom 246 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
36 simprr 771 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ (𝐹𝑘))
37 iffalse 4495 . . . . . . . . . . . . . 14 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = (𝐹𝑘))
3837eleq2d 2823 . . . . . . . . . . . . 13 𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝑘) ∈ (𝐹𝑘)))
3936, 38syl5ibrcom 246 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4035, 39pm2.61d 179 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
4140expr 457 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → ((𝑧𝑘) ∈ (𝐹𝑘) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4241ralimdv 3166 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4342expimpd 454 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (((𝑧𝐼) ∈ 𝑈 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4443ancomsd 466 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
45 elssuni 4898 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐹𝐼) → 𝑈 (𝐹𝐼))
4645ad2antll 727 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 (𝐹𝐼))
4733, 3sseq12d 3977 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘) ↔ 𝑈 (𝐹𝐼)))
4846, 47syl5ibrcom 246 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘)))
49 ssid 3966 . . . . . . . . . . . 12 (𝐹𝑘) ⊆ (𝐹𝑘)
5037, 49eqsstrdi 3998 . . . . . . . . . . 11 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5148, 50pm2.61d1 180 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5251sseld 3943 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝑘) ∈ (𝐹𝑘)))
5352ralimdv 3166 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
5434rspcv 3577 . . . . . . . . 9 (𝐼𝐴 → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5554ad2antrl 726 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5653, 55jcad 513 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
5744, 56impbid 211 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
5857anbi2d 629 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
5930, 58bitrid 282 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6016, 59bitrd 278 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6124elixp 8842 . . 3 (𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6260, 61bitr4di 288 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ 𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6362eqrdv 2734 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wss 3910  ifcif 4486   cuni 4865  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  Xcixp 8835  Topctop 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ixp 8836
This theorem is referenced by:  ptpjpre2  22931  ptbasfi  22932
  Copyright terms: Public domain W3C validator